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Calogero-Moser problem and its generalisations

Calogero (1971), Sutherland (1971), Moser (1975): Interacting particles on
the line with the potential

U(x1, . . . , xn) =
X

1≤i<j≤n

g 2ω2

sinh2 ω(xi − xj)

Olshanetsky and Perelomov (1976) : Generalisations related to root systems

L = −∆ +
X

α∈R+

mα(mα + 2m2α + 1)(α, α)

sinh2(α, x)

Remark. If R is a root system of a compact symmetric space X then L is
conjugated to the radial part of the Laplace-Beltrami operator on X

L = −∆ + 2
X

α∈R+

mα cot(α, x)∂α :

L = ψ̂−1
0 ◦ L ◦ ψ̂0 + const, ψ0 =

Y
α∈R+

sin−mα(α, x).
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Deformed quantum CM problems

O. Chalykh, M. Feigin, A.V. (1996), A.N. Sergeev (2000)

LA
m,n(k) = −∆x − k∆y +

mX
i<j

2k(k + 1)

sinh2(xi − xj)

+
nX

i<j

2(k−1 + 1)

sinh2(yi − yj)
+

mX
i=1

nX
j=1

2(k + 1)

sinh2(xi − yj)
,

k is an arbitrary parameter.
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Generalised root systems

V. Serganova (1996)
V is a vector space with a non-degenerate form <,>.

Definition. A finite set R ⊂ V \ {0} is called a generalised root system if

1) R spans V and R = −R ;

2) if α, β ∈ R and < α,α > 6= 0 then 2<α,β>
<α,α>

∈ Z and

sα(β) = β − 2<α,β>
<α,α>

α ∈ R;

3) if α ∈ R and < α,α >= 0 then for any β ∈ R such that < α, β > 6= 0 at
least one of the vectors β + α or β − α belongs to R.

Remark. There is no Weyl group related to GRS because one can not define a
reflection wrt isotropic root. There exists only a partial symmetry group W0

generated by reflections wrt the non-isotropic roots.
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Classification

V. Serganova (1996):

Irreducible generalised root systems are

classical series A(n,m) and BC(n,m) and three exceptional cases G(1, 2),
AB(1, 3), D(2, 1, λ)

(cf. V. Kac (1977) classification of basic classical Lie superalgebras).

Classical series:

A(n − 1,m − 1) (corresponding to Lie superalgebra sl(n,m)):

R = {ei − ej , i 6= j , 1 ≤ i , j ≤ n + m}

B(u, v) =
nX

i=1

uiv i −
n+mX

j=n+1

ujv j .

In BC(n,m) case (including orthosymplectic Lie superalgebras osp(2m + 1, 2n)
and osp(2m, 2n)) the form B is the same and

R = {±ei , : ± 2ei , : ± ei ± ej , : 1 ≤ i < j ≤ n + m}.
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Deformed CM operators related to generalised root systems

A.N. Sergeev, A.V. (2004):

L = −∆ +
X

α∈R+

mα(mα + 2m2α + 1)(α, α)

sin2(α, x)

where the bilinear form and multiplicities are deformed in such a way that

1) new form B and multiplicities are W0-invariant;

2) all isotropic roots have multiplicity 1;

3) existence of ”radial gauge”:

ψ0 =
Y

α∈R+

sin−mα(α, x)

is a (pseudo)ground state of L: Lψ0 = κψ0.
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Deformed A(m, n) root system

In A(n− 1,m− 1) case the multiplicities are k for A(n− 1), k−1 for A(m− 1),

B(u, v) =
nX

i=1

uiv i + k
n+mX

j=n+1

ujv j

and the corresponding CM operator was given above.

A2(m)

θ cosθ = m

m +1

m

1 1
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Deformed BC (m, n) case

In BCn,m case

R = {±ei , : ± 2ei , : ± ei ± ej , : 1 ≤ i < j ≤ n + m}
B is the same as above, multiplicities are

m(ei ± ej) = k, m(ei ) = p, m(2ei ) = q, i , j = 1, . . . , n,

m(ei ± ej) = k−1, m(ej) = r , m(2ej) = s, i , j = n + 1, . . . , n + m,

where p, q, r , s are satisfying the relations

p = kr , 2q + 1 = k(2s + 1).

m

ϕ

1 1C2(m,l)
l

cos2ϕ =
m− l

m + l+1
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View from infinity: symmetric functions

Let PN = C[x1, . . . , xN ] be the polynomial algebra in N independent variables
and

ΛN = C[x1, . . . , xN ]SN ⊂ PN

be the subalgebra of symmetric polynomials.

Consider the inverse limit of ΛN in the category of graded algebras

Λ = lim
←−

ΛN .

The elements of Λ are called symmetric functions.

Power sums
pk = xk

1 + xk
2 + . . . , k = 1, 2, . . .

are free algebraic generators of Λ with degrees deg pk = k :

Any symmetric function f ∈ Λr is a polynomial of p1, . . . , pr .
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CM operator in infinite dimension

is defined as a unique differential operator L(∞)
k,p0

: Λ → Λ, such that for all
N = 1, 2, . . . and p0 = N the following diagram is commutative

Λ
L(∞)

k,p0−→ Λ
↓ ϕN ↓ ϕN

ΛN

L(N)
k−→ ΛN

where

L(N)
k =

NX
i=1

„
zi
∂

∂zi

«2

− k
NX

i<j

zi + zj

zi − zj

„
zi
∂

∂zi
− zj

∂

∂zj

«
.

is the usual CM operator in exponential coordinates and radial gauge.

Explicitly:

L(∞)
k,p0

=
X

a,b>0

pa+b∂a∂b − k
X

a,b>0

papb∂a+b − kp0

X
a>0

pa∂a + (1 + k)
X
a>0

apa∂a,

where ∂a = a ∂
∂pa
.
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Duality

Stanley, 1989: k → k−1

θ−1 ◦ L(∞)
k,p0

◦ θ = kL(∞)

k−1,k−1p0
, θ : pa → kpa.

For corresponding eigenfunctions (Jack symmetric functions)

θ(Pλ(z , k)) = c(λ, k)Pλ′(z , 1/k),

where λ′ is the transposed Young diagram.

Remark. This duality can not be seen at finite-dimensional level !
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Deformed CM operator as restriction

Let Λm,n,k ⊂ C[u1, . . . , um, v1, . . . , vn]
Sm×Sn consists of polynomials, satisfying„

ui
∂

∂ui
− kvj

∂

∂vj

«
f = 0

on the hyperplane ui = vj . Consider the homomorphism ϕm,n : Λ → Λm,n,k

ϕm,n(pa) = pa(u, v , k) =
mX

i=1

ua
i + k−1

nX
α=1

v a
α.

Theorem 1. The following diagram with p0 = m + kn is commutative

Λ
L(∞)

k,p0−→ Λ
↓ ϕm,n ↓ ϕm,n

Λm,n,k

LA
m,n(k)
−→ Λm,n,k

where LA
m,n(k) is the (gauged) deformed CM operator.
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BC case

BCN operator LN
k,p,q =

∆N−
NX

i<j

„
2k(k + 1)

sinh2(xi − xj)
+

2k(k + 1)

sinh2(xi + xj)

«
−

NX
i=1

„
p(p + 2q + 1)

sinh2 xi

+
4q(q + 1)

sinh2 2xi

«
,

depends on 3 parameters k, p, q.

We define the BC∞ CM operator as

L(k,p,q,h) =
X

a,b>0

(pa+b + 2pa+b−1)∂a∂b − k
∞X
a=2

"
a−2X
b=0

pa−b−1(2pb + pb+1)

#
∂a

+
∞X
a=1

[(a + k(a + 1) + 2h)pa + (2a− 1 + 2ka + 2h − p)pa−1] ∂a,

where

p0 = −k−1(h +
1

2
p + q).

Its eigenfunctions Jλ(u; k, p, q, h) are called Jacobi symmetric functions.
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∞X
a=2

"
a−2X
b=0

pa−b−1(2pb + pb+1)

#
∂a

+
∞X
a=1

[(a + k(a + 1) + 2h)pa + (2a− 1 + 2ka + 2h − p)pa−1] ∂a,

where

p0 = −k−1(h +
1

2
p + q).

Its eigenfunctions Jλ(u; k, p, q, h) are called Jacobi symmetric functions.



Symmetries of BC∞ CM operator

Consider the following automorphisms ω and θ of the algebra Λ :

ω(pi ) = k−1pi ,

θ(pi ) = pi + (−2)i 2k + 1− 2q

2k
.

The BC∞-operator L(k,p,q,h) has the following symmetries (dualities):

L(k,p,q,h) = L(k,p′,q′,h),

ω ◦ L(k,p,q,h) = kL(k−1,r,s,ĥ) ◦ ω,

θ ◦ L(k,p,q,h) = L(k,p̃,q̃,h) ◦ θ,

where
p′ = 1 + 2k − p − 2q, q′ = q,

p = kr , (2q + 1) = k(2s + 1), 2ĥ − 1 = k−1(2h − 1)

p̃ = −p, q̃ = 2k + 1− q.
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Deformed BC Calogero-Moser operators as restrictions

Theorem 2. The following diagram is commutative for h = −km− n− 1
2
p− q:

Λ
L(k,p,q,h)

−→ Λ
↓ ϕm,n ↓ ϕm,n

Λm,n,k

LBC
m,n(k,p,q)
−→ Λm,n,k

In other words, the deformed CM operator LBC
m,n(k, p, q) is a restriction of

BC∞ CM operator onto the corresponding subvariety Spec Λm,n,k .

Proof is based on Okounkov’s formula relating Jacobi and Jack polynomials.

Corollary. For classical series deformed Calogero-Moser problems are integrable.
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Back to Lie superalgebras: orthosymplectic Euler supercharacters

The image of Jacobi symmetric functions

SJλ(u, v ; k, p, q) = ϕm,n(Jλ(x ; k, p, q, h)),

where h = −km − n − 1
2
p − q, are called super Jacobi polynomials. Their

specialized version have an interesting interpretation in representation theory of
orthosymplectic Lie superalgebras osp(M, 2N).

I. Penkov, V. Serganova (1989): super version of Borel-Weil-Bott
construction =⇒ Euler supercharacters Eλ

Theorem 3. For a special choice of parabolic subgroup the Euler
supercharacters of osp(2m + 1, 2n) coincide with specialized super Jacobi
polynomials

Eλ = cλSJλ(u, v ;−1,−1, 0)

A similar fact holds for Lie superalgebra osp(2m, 2n) and SJλ(u, v ;−1, 0, 0)

Corollary: Pieri and Jacobi-Trudy formulas for Euler supercharacters
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Some related stuff

I ∨-systems and special solutions to WDVV equations (A.V. (1999), M.
Feigin, A.V. (2007))

I N = 4 multiparticle mechanics and orthocentric tetrahedra (Lechtenfeld
(2008))

I Special k case: Huygens’ principle (Berest, V (1993)) and coincident
root loci (B. Feigin et al (2001), Kasatani et al (2004))

I Links with Virasoro algebra (Mimachi and Yamada, Awata et al (1996))

I Dunkl operators and Cherednik algebras (M. Feigin (2008))
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