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1 Topological charges

1.1 Chern–Pontryagin charges and their descendents

These are defined in all even dimensions, and dimensional descent enables their
definition in all odd dimensions as well.

• Chern–Pontryagin charges stabilise instantons (Yang–Mills solitons) in all
even dimensions. These are evaluated by surface integrals whose values de-
pend only on the asymptotic properties of the fields. Famously, the asymp-
totic gauge connection behaves as a pure gauge.

Instantons of suitable Yang–Mills models in all even 2p+ 2 dimensions exist
for suitable models defined in terms of 2p−form curvature fields F (2p) =
F (2)∧F (2)...∧F (2), and in particular in 4p saturate their topological lower
bounds. However, for all p ≥ 1 the selfduality equations are (progressively
more) overdetermined and support nontrivial solutions only when subjected
to suffiently high symmetry.

• Descendents of Chern–Pontryagin charges stabilise Yang–Mills–Higgs soli-
tons on both even and odd IRD, for the model described after dimensional
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reduction of the Yang–Mills system on IRD ×KN (D + K even) after inte-
grating over the compact coset space K. One might call these “monopoles
in all dimensions”

– For odd D, the charge density is gauge invariant, e.g. monopole charge
density

– For even D, the charge density is gauge variant, e.g. vortex number
density of the Abelian Higgs model

– Bogomol’nyi bounds for monopoles in dimensions D ≥ 4 are overdeter-
mined and cannot be saturated

– In contrast to instantons, the connection field of monopoles in all di-
mensions D ≥ 3 behave as one-half pure gauge. This is a consequence
of symmetry breaking asymptotics of the Higgs field. The resulting
(slower) decay enables the definition of Dirac–Yang monopoles on the
boundary

– The topology of the monopole charge is encoded in the Higgs field,
and is essentially a winding number as in Goldstone models

• Winding numbers for regular scalar fields, which map the configuration space
on to the base space, stabilise the solitons of the corresponding models. Like
the Pontryagin charge, they depend only on the asymptotic properties of the
fields.

– In the gauge decoupling limit of the above YMH models supporting
monopoles (in all dimensions), we refer to the resulting scalar field model
as a Goldstone model. These satsfy symmetry breaking asymptotics and
their topological charge densities are the gauge decoupled limits of the
monopole charge densities discussed in the above item. Like the latter,
these charge densities are total divergences 7→ surface integral for the
charge

– For constrained, Sigma Model, fields by contrast the charge density is
not always a total divergence, but is essentially total divergence in the
sense that subjecting it to the variational principle results in no equa-
tions of motion. When a parametrisation of the fields incorporates
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the sigma–model constraint, then these charge densities become total
divergences.

∗ Sigma models featuring SD valued fields on IRD, e.g. the usual
Skyrme model for D = 3, are as described above, but,

∗ Sigma models featuring complex valued fields, e.g. CPn or Grass-
mannian valued fields are defined in terms of (in general) matrices
z1 and z1

Z =

[
z1

z2

]
subject to Z† Z = 1I (1)

(When the matrices z1 and z1 are replaced by (n + 1)−component
arrays these are the CPn models.) Assuming that the models in
question are invariant under the gauge transformations Z → Z g,
this enables the definition of a composite connection

Bi = Z†∂iZ . (2)

with respect to which the covariant derivative

DiZ = ∂iZ − Z Bi (3)

transforms as DiZ → DiZ g.
The winding number densities in these models can be constructed
as Pontryagin densities by directly using the curvatures Gij of the
composite connections (38). Clearly, these are by construction total
divergence in contrast to the case of sigma models with SD− fields.

The composite connections of the solitons of the sigma models are asymp-
totically pure gauge, like instantons.

In summary, solitons of the Goldstone models are akin to monopoles in that
they both describe symmetry breaking solutions. By contrast solitons of
the (complex) sigma models are akin to instantons in that their asymptotic
composite gauge connections are pure gauge. This last property persists also
for the gauged SD sigma models, to be discussed immediately

• Winding numbers of gauged scalar fields stabilise the corresponding solitons
of a) gauged Goldstone models and b) gauged Sigma models. With suit-
able gauging prescription and for appropriate choice of model, Bogomol’nyi
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bounds for both gauged Goldstone models and gauged Sigma models can be
established . These bounds are never saturated.

Note: A gauged Goldstone model differs from a Yang–Mills–Higgs model
resulting from the dimensional descent of Yang–Mills system. The topologi-
cal lower bound of a gauged Goldstone model is always higher than that of
the Yang–Mills–Higgs model featuring the same field multiplet.

1.2 Chern–Simons charges: Hopfions

The O(3), or equivalently the CP1, sigma model is said to describe the ferromag-
net. Belavin and Polyakov constructed all the solitons of this model, on IR2. But
the ferromagnet lives on IR3 and not IR2, so another type of soliton is needed for
this purpose, i.e., inter alia, a new topological charge. This is the Hopf charge
which is the volume integral of the Chern–Simons density constructed from the
composite connection of the CP1 coordinate.

These charges stabilise solitons of (ungauged) Sigma Models. What distin-
guishes them from the usual Sigma Model solitons on IRD is that the scalar field
multiplet involved is not that for which the usual soliton on IRD exists, but rather
it is the scalar multiplet for which the usual soliton on IRD−1 exists. As such one
would not immediately expect the existence of solitons in this case since the def-
inition of the usual winding number density is now lost because of the mismatch
between the dimensions of the space and the scalar multiplet.

There exists however another global charge, which is topological in its origin
in that its value depends exclusively on the asymptotic value of the field. This is
the Chern–Simons charge which stabilises the Hopfion.

The following are the salient properties of the Chern–Simons densities:

• They are defined in odd spacelike dimensions only

• Unlike Chern–Pontryagin densities, the Chern–Simons (CS) densities are
not total divergences. Hence it is obvious that the integral of the CS
density for a Yang–Mills theory does not depend exclusively on the asymp-
totics and that it is not a topological charge. The definition of a CS density
requires nevertheless the existence of a connection field

• To enable the definition of a globally defined topological charge that depends
only on the asymptotic fields, the Chern–Simons density must be cast in
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the form of an essentially total divergence. This is why the dynamics of the
appropriate models must be that of a Sigma Model.

• To realise CS Hopfions therefore, it is convenient to employ complex projec-
tive sigma models for which one can readily define a composite connection
as in (38)

• It is readily verified that the CS density of a complex Sigma Model described
by Z, in (1), is indeed an essentially total divergence whose volume integral
is a topological charge depending only on the asymptotic values Z takes. For
example in the D = 3 case, subjecting the CS density

ΩSU(2) =
1

2
εijk TrBk

(
Gij −

2

3
BiBj

)
+ Λ (1I− Z† Z) , (4)

to the variational principle taking into account the constraint via the use of
the Lagrange multiplier (matrix) Λ, yields

εijkDkZ Gij = 0 , (5)

which is identically zero by virtue of the Bianchi identity.

Replacing the complex valued matrix Z with an array automatically gives
the CPn case. The formal extension of this demonstration to arbitrary IR2p+1

proceeds systematically.

In the presentation at hand, we restrict to that Abelian case, namely to CPn

models on IR2n+1, further restricting our detailed considerations to the well
known case of n = 1, and to the case n = 2.

2 The CP n models on IR2n+1

The models are described by complex n−tuplets

Z =


z1

z2

..

..
zn+1

 ≡ za ; a = 1, 2, ..., n+ 1 , (6)
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subject to the constraint
Z† Z ≡ z̄a za = 1 , (7)

taking their values in U(n+1)
U(n)×U(1) , such they are described by 2n+1 real parameters

that parametrise IR2n+1.
The most interesting feature of these models is that when the field Z is sub-

jected to a local U(1) gauge transformation g = eiΛ(x), then the quantity defined
as

Bi = i Z†∂iZ , i = 1, 2, ..., 2n+ 1 (8)

transforms like a composite connection under g(Λ) = eiΛ. This then enables the
definitions of the curvature of this connection and the covariant derivative of Z
with respect to it

Gij = ∂iBj − ∂j Bi (9)

DiZ = ∂i Z + iBi Z . (10)

The Abelian CS density on IR2n+1 is then readily defined in terms of the quantities
(9) and (10). This is what makes these models well suited to describing Abelian
Hopfions in all odd dimensions.

2.1 CP 1 models on IR3

The most general 1 model supporting finite energy solutions, consistent with the
Derrick scaling requirement is

H = κ0
0 V +

1

2
κ2

1DiZ
†DiZ +

1

4
κ4

2G
2
ij (11)

with DiZ and Gij given by (10) and (9). The constants κ0, κ1, and κ2 each have
the dimension of length, and V = is some pion mass type potential, which we
will choose as

V = 1 + Z† σ3 Z . (12)

In the special case with κ0 = 0, (11) reduces to the Skyrme-Fadde’ev model.

1In the usual Skyrme model, namely the O(4) model on IR3, there is also a nonvanishing sextic term in the
most general case. For the Skyrme-Fadde’ev model, namely the CP1 model on IR3, this term vanishes since there
are only two independent fields in this case in contrast with the three in the former.
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The reduced 2 dimensional subsystem of (11) employing an Ansatz which gives
a deformation of the field Z after it is subjected to axial symmetry in the (x1, x2)
plane. The Anstaz used is

Z =

[
a+ ib
c einϕ

]
≡
[

sin f
2 eiα

cos f
2 einϕ

]
(13)

where the functions a, b, c, f and α all depend on both ρ =
√
|xα|2 and z ≡ x3,

α = 1, 2. The field (13) is not really axially symmetric, as long as α 6= 0 (or
b 6= 0), and as we shall see later the CS density vanishes unless α 6= 0.

2.2 CP 2 models on IR5

The most general 2 model supporting finite energy solutions, consistent with the
Derrick scaling requirement is.

H = κ0
0 V +

1

2
κ2

1DiZ
†DiZ +

1

4
κ4

2G
2
ij +

1

8
κ6

3 (G[ijDk]Z)†(G[ijDk]Z) +
1

16
κ8

4G
2
ijkl

(14)
with DiZ and Gij given by (10) and (9), and the 4−form Gijkl being the totally
antisymmetrised product of this curvature. The constants κ0, κ1, κ2, κ3 and
κ4 each have the dimension of length, and V is some pion mass type potential.
According to the scaling requirement for finite energy, it is necessary to retain at
least one of the constants (κ0, κ1, κ2) and at least one of the constants (κ3, κ4),
with the option of setting the rest equal to zero.

From the purely pragmatic viewpoint of algebraic manipulation the simplest
model is

H(2,4) =
1

4
κ4

2G
2
ij +

1

16
κ8

4G
2
ijkl (15)

2.2.1 Reduced CP 2 models on IR5: via bi-azimuthal symmetry

The reduced 3 dimensional subsystem of (14) employing an Ansatz which gives a
deformation of the field Z after it is subjected to two azimuthal (axial) symme-
tries in the (x1, x2) and (x3, x4) planes separately. The bi-azimuthally symmetric

2In the O(6) sigma models on IR5, there is also a nonvanishing dectic term |G[ijklDm]Z|2 in the most general
case. In the CP2 model on IR5, this term vanishes since there are only four independent fields in this case in
contrast with the five in the former.
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Ansatz here for the field (6), with n = 2, is

Z =

 a(ρ, σ, z) + ib(ρ, σ, z)
c(ρ, σ, z) einϕ

d(ρ, σ, z) eimχ

 ≡
 sin 1

2f(ρ, σ, z) eiα(ρ,σ,z)

cos 1
2f(ρ, σ, z) sin g(ρ, σ, z) einϕ

cos 1
2f(ρ, σ, z) cos g(ρ, σ, z) eimχ

 (16)

in terms of the variables ρ =
√
|xα|2, σ =

√
|xA|2 with α = 1, 2, A = 3, 4 and

z ≡ x5. ϕ and χ are the azimuthal angles in the (x1, x2) and (x3, x4) planes
respectively, (n,m) being the winding (vortex) numbers of plane respectively.
The field (16) is not really bi-azimuthally symmetric, as long as α 6= 0 (or b 6= 0),
and as we shall see later the CS density vanishes unless α 6= 0.

3 Chern–Simons densities on IR3 and on IR5

3.1 Chern–Simons density on IR3

The Chern–Simons density on IR3, denoting the coordinates xi = (xµ, x3), is

Ω
(3)
U(1) = εmij BmGij

= εαβ (B3Gαβ + 2BαGβ3) . (17)

Substituting the azimuthally symmetric Ansatz (13) into (17) yields the simple
expression

1

2
Ω

(3)
CS = det

∣∣∣∣∣∣
a b c

aρ bρ cρ
az bz cz

∣∣∣∣∣∣ . (18)

It is clear that if any one of the functions a, b, and c vanishes, i.e. if Z is truely
azumuthally symmetric, Ω

(3)
CS vanishes 3.

3In particular, if one restricts to the Ansatz

Z =
[

a(ρ)
c(ρ) einϕ

]
≡
[

sin 1
2f(ρ)

cos 1
2f(ρ) einϕ

]
(19)

for the system (11) defined instead on IR2, i.e. replacing the index i = α, 3 by α = 1, 2, then the solutions are the
Belavin-Polyakov (ferromagnet) instantons with vorticity n stabilised by the first Chern-Pontryagin charge of the
(composite) Abelian connection.
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The topological charge can be expressed as

Q = 2π

∫
ΩU(1) ρ dρ dz = −2π n

∫
α[ρ (cos f)z] dρ dz (20)

The volume integral (20) can be rewritten using the notation xA = (ρ, z), A = 1, 2
as follows

Q = −2π n

∫
εAB ∂Aα ∂B(cos f) d2x , (21)

which can be evaluated by applying Stokes’ Theorem.
Using a semicircular contour for the line integral resulting from (21) is

Q = −2π n

∫ z=+∞

z=−∞
cos f ∂zα dz − 2π n

∫ θ=mπ

θ=0
(cos f ∂θα)

∣∣
r→∞ dθ . (22)

Now the first integral in (22) should vanish by parity, while the integrand of the
second one at infinite r =

√
ρ2 + z2 should, since limr→∞ f(r) = 1, be equal to

lim
r→∞

∂θα . (23)

Thus, requiring the asymptotic value

lim
r→∞

α(r, θ) = mθ , (24)

results in
Q = −2π nm .

3.2 Chern–Simons density on IR5

The Chern–Simons density on IR5, denoting the coordinates xi = (xµ, x5), is

Ω
(5)
U(1) = εmijklBmGij Gkl

= εµνρσ (B5Gµν Gρσ + 4BµGν5Gρσ)

= 2εαβεAB

{
B5 (Gαβ GAB − 2GαAGβB)

+2 [Bα (Gβ5GAB − 2GA5GβB) +BA (GB5Gαβ − 2Gα5GBβ)]

}
.(25)
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Substituting the bi-azimuthally symmetric Ansatz (16) into (41) yields the simple
expression

1

2
Ω

(5)
CS = det

∣∣∣∣∣∣∣∣
a b c d
aρ bρ cρ dρ
aσ bσ cσ dσ
az bz cz dz

∣∣∣∣∣∣∣∣ . (26)

It is clear that if any one of the functions a, b, c and d vanishes, i.e. if Z is truely
bi-azumuthally symmetric, Ω

(5)
CS vanishes 4.

Substituting the trigonometric parametrisation in (16), namely the parametri-
sation in which the sigma model constraint is already imposed, (26) reduces to
the simple expression

1

2
Ω

(5)
CS = 4 · (2π)2 n1 n2

∫
[∂ρ(cos f) ∂σg ∂zα + cycl.(ρ, σ, z)] dρ dσ dz . (28)

Parametrising the coordinates in the notation (ξi = (ρ, σ, z)), i = 1, 2, 3, where

ξi =

 r sinψ sin θ
r sinψ cos θ
r cosψ

 (29)

with 0 ≤ ψ ≤ π and 0 ≤ θ ≤ π
2 . Then, re-expressing (28) as

1

2
Ω

(5)
CS = 4 · (2π)2 n1 n2

∫
εijk∂i(cos f) ∂jg ∂kα d

3ξ

= 4 · (2π)2 n1 n2

∫
εijk ((cos f) ∂jg ∂kα)

∣∣∣∣
r→∞

ξ̂i dS (30)

in an obvious notation where dS = r2 sinψ dψ dθ, and where we have applied
Gauss’ Theorem.

4In contrast to the 3 dimensional case above however, restricting to the Ansatz

Z =

 a(ρ, σ)
c(ρ, σ) einϕ

d(ρ, σ) eimχ

 ≡
 sin 1

2f(ρ, σ)
cos 1

2f(ρ, σ) sin g(ρ, σ) einϕ

cos 1
2f(ρ, σ) cos g(ρ, σ) eimχ

 (27)

for the system (14) defined instead on IR4, i.e. replacing the index i = µ, 5 by µ = 1, 2, 3, 4, the resulting solutions
are not topologically stable instantons. This is because the second Chern-Pontryagin charge exists only for a gauge
group containing SU(2).
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The result is

1

2
Ω

(5)
CS = 4 · (2π)2 n1 n2

∫ π

ψ=0

∫ π
2

θ=0
cos f (∂ψg ∂θα− ∂ψα ∂θg)

∣∣∣∣
r→∞

dψ dθ . (31)

Finally, requiring the boundary values

lim
r→∞

g = θ , lim
r→∞

α = mπ , (32)

(30) yields the following charge

Ω
(5)
CS = −32π3 n1 n2m. (33)

Note: For CP3 on IR7, Z must be deformed–tri-azimuthally 5 symmetric, leading
to a four dimensional reduced system, and so on. Thus for CPn on IR2n+1, Z must
be deformed–n−fold-azimuthally5 symmetric, leading to a (n + 1)−dimensional
reduced system of PDE’s.

The important point here is to realise that the deformed–n−fold-azimuthally
symmetric Z is encoded with n+1 functions, e.g. α, f, g1, g2, .., gn−2 of the n radii
of the n planes in IR2n+1, plus the (n+1)−th compnent. Thus when this symmetry
is imposed on the Abelian CS density, one ends up with a total divergence in
the residual space. In my opinion, this is a ”poor man’s” demonstration of the
existence of the Hopf charge density.

4 Non-Abelian Grassmannian model on IR5

The sigma model employed is the Grassmannian model described by the complex
valued field

Z =

[
z1

z2

]
(34)

where z1 and z2 are complex 2×2 matrices. The field Z is subject to the constraint

Z† Z = 1I2×2 . (35)

5The nomenclature deformed–n−fold-azimuthally symmetric here means that first strict n−fold-azimuthal
symmetry is imposed in the 2n−dimensional subspace of IR2n+1, and then Z is deformed by extending it with the
additional phase function α which destroys the n−fold-azimuthal symmetry, as in (13) and (16)
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Under the action of the local gauge transformation g ∈ SU(4) on Z we have

Z → Z g =⇒ DiZ → DiZ g (36)

where DiZ is the covariant derivative

DiZ = ∂iZ − Z Bi (37)

defined by the composite connection

Bi = Z†∂iZ . (38)

Then composite (non Abelian) curvature Gij is defined as

Gij = ∂[iBj] + [Bi, Bj] . (39)

Clearly, the gauge group here is SU(2).
It should be remarked at this stage that the Grassmannian sigma model defined

by this field on IR4 supports ’instanton’ solutions stabilised bt the Pontryagin
charge defined in terms the composite curvature Gij, (39). Indeed, if one restricts
to the system

TrG2
ij , (40)

this is scale invariant and the instantons are in addition self–dual

Gij = ±?Gij .

Here, we are concerned with systems defined by this field on IR5, and not on IR4.
The solutions in this case are not any longer stabilised by the Pontryagin charge,
but rather by the Chern-Simons (CS) charge 6

Ω
(5)
SU(2) = εijklmTrBm

[
GijGkl −GijBkBl +

2

5
BiBjBkBl

]
. (41)

6The analogy with the Abelian case in IR3 is here quite clear. In that case, the CP 1 model on IR2 supports
’instantons’ stabilised by the first Pontryagin charge defined in terms of the Abelian composite curvature (9). In
particular, when one restricts to the scale invariant system

DiZ
†DiZ ,

the solutions satisfy the first-order self-duality equations

DiZ = εijDjZ

which are the celebrated Belavin–Polyakov vortices modelling the Ferromagnet.
The CP 1 model on IR3 by contrast, does not support instantons stabilised by the Pontryagin, but rather,

Hopfions stabilised by the CS charge (17). Of course in that case the system must feature in addition the quartic
term G2

ij , for the Derrick scaling requirement to be satisfied. That is the well known Skyrme–Fadde’ev model.
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Clearly, the model chosen in this case must differ from (40), which in 5−dimensions
would violate the Derrick scaling requirement. To this end one can employ one
of the terms

TrDiZ
†DiZ , and/or TrG2

ij ,

and one of
Tr (D[kZ

†Gij])(G[ijDk]Z , and/or TrG2
ijkl .

The appropriate symmetry to be imposed in this case is, just as in the CP 2

model on IR5 above, the bi-azimuthal symmetry. The Anzatz resulting fromn
this symmetry restricts the functions z1 and z2 in (34) to be

z1 = a(ρ, σ, z) 1I + 2b(ρ, σ, z)nβmB ΣβB (42)

z2 = c(ρ, σ, z)nβ Σ̃β + d(ρ, σ, z)}mB Σ̃B (43)

where Σµ = (Σα,ΣA) and §̃µ = (Σ̃α, Σ̃A) are the chiral spin matrices of SO(4), so
that Σµν = (Σαβ,ΣαA,ΣAB) are the Dirac representations Σµν = −1

4Σ̃[µΣ̃ν].
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