DIRAC COMPLEX, DOLBEAULT COMPLEX, AND SUPERSYMMETRIC QUANTUM MECHANICS

ONE MORE PROOF OF THE ATIYAH-SINGER THEOREM

based on [E.Ivanov + A.S., in preparation]

Erevan, August 24, 2010

ATIYAH-SINGER THEOREM

(High school version)

• Consider the motion of a massless electron on the plane in external magnetic field B(x,y).

Dirac operator:

$$\mathcal{D} = \sigma_j(\partial_j - iA_j), \qquad j = 1, 2$$

• $\{D, \sigma_3\} = 0 \rightarrow$

Double degeneracy of all excited level \equiv supersymmetry

The index and its integral representation

$$I_{\mathcal{D}} = \operatorname{Tr}\left\{\sigma_3 e^{-\beta \mathcal{D}^2}\right\} = n_L^0 - n_R^0 =$$

$$\Phi = \frac{1}{2\pi} \int B(x, y) \, dx dy.$$

$$x-\varepsilon$$
 $X+\varepsilon$
 $A_{\mu}(y) = -y_{\nu}F_{\mu\nu}(y)/2$

Figure 1: Schwinger-splitted ferm. propagator in external field

Heat kernel proof

• Anomalous divergence

$$\partial_{\mu} J_{\mu} = \frac{1}{4\pi} \epsilon_{\alpha\beta} F_{\alpha\beta} .$$

• May be proven by Schwinger splitting

$$J_{\mu} \to J_{\mu}(\epsilon) = \bar{\psi}(x+\epsilon)\gamma_{\mu}\gamma^5\psi(x-\epsilon)$$

Functional integral proof

 \bullet Dirac index \equiv Witten index of a SQM system with

$$H = \mathcal{D}^2$$
, $Q = \mathcal{D}(1 + \sigma_3)$, $\bar{Q} = \mathcal{D}(1 - \sigma_3)$

• can be mapped to

$$H = \frac{1}{2}(P_j + A_j)^2 + \frac{1}{2}B[\psi, \bar{\psi}]$$

then

$$I = \int \prod_{\tau} \frac{d\bar{\pi}(\tau)d\bar{z}(\tau)d\pi(\tau)dz(\tau)}{(2\pi)^2} d\bar{\psi}(\tau)d\psi^{\dagger}(\tau)$$

$$\exp\left\{\int_0^\beta \left[i\pi\dot{z} + i\bar{\pi}\dot{\bar{z}} + i\bar{\psi}\psi - H(\pi,\bar{\pi},z,\bar{z};\bar{\psi},\psi)\right]\right\} ,$$

with periodic boundary conditions.

 \bullet For small β , this gives (?) an ordinary integral

$$I = \int \frac{d\pi dz d\bar{\pi} d\bar{z}}{4\pi^2} d\psi d\bar{\psi} \exp\{-\beta H\} \rightarrow \text{magnetic flux},$$

Gen. even-dimensional manifold with Ab. gauge field

$$I = \int e^{\mathcal{F}} \det^{-1/2} \left[\frac{\sin \frac{\mathcal{R}}{4\pi}}{\frac{\mathcal{R}}{4\pi}} \right] ,$$

with

$$\mathcal{F} = F_{MN} dx^M \wedge dx^N$$
, $\mathcal{R}_{MN} = \frac{1}{2} R_{MNPQ} dx^P \wedge dx^Q$.

• Heat kernel proof — Atiyah + Singer 1968,1971

• Functional integral proof — Alvarez-Gaumé, 1983; Friedan + Windey, 1984.

(based on the standard susy structure $\{D\!\!\!/ (1\pm \sigma_3); D\!\!\!\!/^2\}$)

• This talk — an alternative proof based on an alternative susy structure for Kähler manifolds.

A SQM MODEL

• Consider the chiral (antichiral) superfields

$$Z^{j}(t_{L},\theta) = z^{j}(t_{L}) + \sqrt{2}\theta\psi^{j}, \quad \bar{Z}^{\bar{i}}(t_{R},\bar{\theta}) = \bar{z}^{\bar{j}} - \sqrt{2}\bar{\theta}\bar{\psi}^{\bar{j}}.$$
$$(t_{L,R} = t \mp i\theta\bar{\theta})$$

• Consider the action

$$S = \int dt d^2\theta \left(\mathcal{L} + \mathcal{L}_{WZ} \right),$$

$$\mathcal{L} = -\frac{1}{4} g_{i\bar{j}}(Z, \bar{Z}) DZ^{i} \bar{D} \bar{Z}^{\bar{j}}, \quad \mathcal{L}_{WZ} = \frac{c_0}{2} W(Z, \bar{Z})$$

with

$$D = \frac{\partial}{\partial \theta} - i \bar{\theta} \partial_t, \bar{D} = -\frac{\partial}{\partial \bar{\theta}} + i \theta \partial_t$$

• In components:

$$S \equiv \int dt \left(L + L_{WZ} \right) = \int dt \left\{ g_{i\bar{j}} \left[\dot{z}^{i} \dot{\bar{z}}^{\bar{j}} + \frac{i}{2} \left(\psi^{i} \dot{\psi}^{\bar{j}} - \dot{\psi}^{i} \bar{\psi}^{\bar{j}} \right) \right] \right.$$

$$\left. - \frac{i}{2} \left[\left(2 \partial_{t} g_{i\bar{j}} - \partial_{i} g_{t\bar{j}} \right) \dot{z}^{i} - \left(2 \partial_{\bar{j}} g_{t\bar{i}} - \partial_{\bar{i}} g_{t\bar{j}} \right) \dot{\bar{z}}^{\bar{i}} \right] \psi^{t} \bar{\psi}^{\bar{j}} \right.$$

$$\left. + \left(\partial_{t} \partial_{\bar{l}} g_{i\bar{k}} \right) \psi^{t} \psi^{i} \bar{\psi}^{\bar{l}} \bar{\psi}^{\bar{k}} + c_{0} \left[\partial_{i} \partial_{\bar{k}} W \psi^{i} \bar{\psi}^{\bar{k}} - \frac{i}{2} \left(\partial_{i} W \dot{z}^{i} - \partial_{\bar{i}} W \dot{z}^{\bar{i}} \right) \right] \right\}.$$

- $g_{i\bar{i}}$ the metric.
- \bullet other terms are expressed via Christoffel symbols, spin connections, torsions, and W.

• For Kähler manifolds,

$$g_{i\bar{k}}(Z,\bar{Z}) = \partial_i \partial_{\bar{k}} K(Z,\bar{Z}) ,$$

the torsion terms vanish, and things simplify.

Classical supercharges and hamiltonian

$$Q_{cl}^{K} = \sqrt{2} \left[\Pi_{k} - i \bar{\psi}^{\bar{a}} \psi^{b} \left(\omega_{k,\bar{a}b} \right) \right] e_{c}^{k} \psi^{c},$$
$$\bar{Q}_{cl}^{K} = \sqrt{2} e_{\bar{c}}^{\bar{k}} \bar{\psi}^{\bar{c}} \left[\bar{\Pi}_{\bar{k}} + i \bar{\psi}^{\bar{a}} \psi^{d} \left(\bar{\omega}_{\bar{k},d\bar{a}} \right) \right].$$

$$H_{cl}^{K} = g^{i\bar{k}} \left(\Pi_{i} - i\omega_{i,\bar{b}a} \,\bar{\psi}^{\bar{b}} \psi^{a} \right) \left(\bar{\Pi}_{\bar{k}} + i\bar{\omega}_{\bar{k},a\bar{b}} \,\bar{\psi}^{\bar{b}} \psi^{a} \right)$$
$$-2c_{0}e_{a}^{i} e_{\bar{b}}^{\bar{k}} \partial_{i} \partial_{\bar{k}} W \psi^{a} \bar{\psi}^{\bar{b}} ,$$

where $\Pi_k = P_k + i(c_0/2)\partial_k W$ and $\omega_{j,\bar{b}a} = e_{\bar{b}}^k \partial_j e_{\bar{k}}^{\bar{a}}$ are Kähler spin connections.

Quantization

- Ordering ambiguities. Want to keep supersymmetry at quantum level.
 - Universal recipe (A.S., 1987):
- a) Weyl ordering of classical supercharges gives "flat" supercharges
 - b) covariant supercharges are obtained by a similarity transformation $Q \to (\det g)^{-1/2} Q(\det g)^{1/2}$.

$$Q^{cov} = \sqrt{2}\psi^c e_c^k \left[\Pi_k - \frac{i}{2} \partial_k (\ln \det \bar{e}) + i\psi^b \bar{\psi}^{\bar{a}} (\omega_{k,\bar{a}b}) \right]$$
$$\bar{Q}^{cov} = \sqrt{2}\bar{\psi}^{\bar{c}} e_{\bar{c}}^{\bar{k}} \left[\bar{\Pi}_{\bar{k}} - \frac{i}{2} \partial_{\bar{k}} (\ln \det e) + i\bar{\psi}^{\bar{a}} \psi^d (\bar{\omega}_{\bar{k},d\bar{a}}) \right],$$

COMPLETION TO EXTENDED SUSY KAHLER MODEL

- NO gauge field!
- The Lagrangian can be reduced to

$$\mathcal{L}^K = -\frac{i}{2} \dot{Z}^k \partial_k K$$

(K - Kähler potential)

• Introduce chiral fermionic superfields $\Phi^j, \bar{\Phi}^{\bar{k}}$ and write

$$ilde{\mathcal{L}}^K = \mathcal{L}^K + rac{1}{4} \, g_{iar{k}} \, \Phi^i \, ar{\Phi}^{ar{k}}$$

Bingo!

Geometric interpretation

1. Dolbeault

• Choose

$$W = -(\ln \det g)/(n+1)$$

 $(\partial_k W \text{ is called a tautological bundle}) \text{ and assume } \det \bar{e} = \det e = \sqrt{\det g}.$

- Let $c_0 = (n+1)/2$. Then
- a) Π_k is reduced to a holomorphic derivative and
- b) The action of \hat{Q} on the wave functions is isomorphic to the action of the external holomorphic derivatives ∂ on the holom. (p,0) forms.
 - c) $\hat{\bar{Q}}$ maps to ∂^{\dagger} .
 - ∂ and ∂^{\dagger} form the Dolbeault complex.

- $c_0 = -(n+1)/2$. In this case,
- \bullet $\bar{\Pi}_{\bar{k}}$ is reduced to the antiholomorphic derivative
 - \hat{Q} is mapped to $\bar{\partial}$ and \hat{Q} to $\bar{\partial}^{\dagger}$.
- We obtain the antiholomorphic Dolbeault complex.
- Generic $c_0 \longrightarrow \text{twisted}$ Dolbeault and/or anti-Dolbeault complex.

2. Dirac

• Let $c_0 = 0$. Then

$$Q = \sqrt{2}\psi^b e_b^k \left[\partial_k + \frac{1}{2} \omega_{k,\bar{a}d} (\bar{\psi}^{\bar{a}} \psi^d - \psi^d \bar{\psi}^{\bar{a}}) \right] .$$

• Map fermion variables to γ - matrices: $\sqrt{2}\psi^a \equiv \gamma^a$, $\sqrt{2}\bar{\psi}^{\bar{a}} \equiv \gamma^{\bar{a}}$. Then

$$Q + \bar{Q} \equiv \mathcal{D} = \gamma^A e_A^M \left(\partial_M + \frac{1}{4} \omega_{M,BC} \gamma^B \gamma^C \right) \equiv \gamma^A \mathcal{D}_A.$$

• Another real supercharge

$$S = i \left[\mathcal{D}^{\text{Hol}} - \left(\mathcal{D}^{\text{Hol}} \right)^* \right] = \gamma^A I_A^B \mathcal{D}_B,$$

where $I_A^B, I^2 = -1$, is the matrix of complex structure, $I = \text{diag}(i\sigma_2, \dots, i\sigma_2)$

• Noticed before by Kirschberg + Lange + Wipf.

• $c_0 \neq 0 \longrightarrow \text{Re}[Q]$ is the twisted Dirac operator (with external gauge field)

CONCLUSION:

For Kähler manifolds, the Dirac complex, twisted by a bundle proportional to the tautological bundle $\partial_k \ln \det g$, is equivalent to a twisted holomorphic or antiholomorphic Dolbeault complex.

THE INDEX

• small β limit; functional integral \rightarrow ordinary integral,

$$I = \left(\frac{1}{2\pi}\right)^n \int \prod_j dz^j d\bar{z}^{\bar{j}} \det \|g_{i\bar{k}}\| \det \|\mathcal{F}_{a\bar{b}}\| ,$$

with $\mathcal{F}_{a\bar{b}} = c_0 e_a^i e_{\bar{b}}^{\bar{k}} \partial_i \partial_{\bar{k}} W$ (generalized magnetic field strength).

• For $\mathbb{C}P^n$, this gives

$$I_{CP^n} \stackrel{?}{=} \frac{(c_0)^n}{n!}$$
.

• Not integer and strange. Does not take into account curvature.

• The correct result:

$$I_{CP^n} = \left(\begin{array}{c} c_0 + (n-1)/2 \\ n \end{array} \right) ,$$

is integer is c_0 is integer (odd n) and half-integer (even n)

Resolution of the paradox : one cannot neglect higher Fourrier modes.

One should instead expand

$$z^{j}(\tau) = z^{j(0)} + \sum_{m \neq 0} z^{j(m)} e^{2\pi i m \tau/\beta}$$
,

etc. and integrate over $\prod_{jm} dz^{j(m)} \cdots$ in the Gaussian approximation.

• Doing this and going to real notation, we reproduce the known result

$$I = \int e^{\mathcal{F}} \det^{-1/2} \left[\frac{\sin \frac{\mathcal{R}}{4\pi}}{\frac{\mathcal{R}}{4\pi}} \right] ,$$

• Origin of $\sin[\cdots]$

$$\prod_{m=1}^{\infty} \frac{(2\pi m)^2}{(2\pi m)^2 + a^2} = \frac{a}{2\sinh(a/2)}.$$