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Motivation

Experience: Information can be transmitted only with finite speed.
Mathematical framework: Theory of hyperbolic pde’s
Important example: The wave equation

�ψ = 0

� =
∂2

∂t2
−∆ = d’Alembert operator

t = time and −∆ = Laplace operator on the space under
consideration.
Networks in various disguises serve as models for transporting
information. So one might ask the question:
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Motivation

Can one discuss waves and their propagation in networks?

Is there a mathematical model within which one may ask
about finite propagation speed?
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Motivation

The answer is yes:

The model is given by the following data:

(i) a metric graph G
and

(ii) a Laplace operator −∆ on G

The metric graph should be viewed as an idealized version
of a network
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Metric graphs

Definition:

A metric graph G is a finite collection of half lines and finite intervals of
given lengths with an identification of some of their endpoints (=vertices)

b

b

bb

b b b b

A graph with 8 vertices, 7 external and 17 internal edges and one tadpole.
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Analysis

So it makes sense to speak of

Functions on the graph

Measurable functions

Lebesgue integration

Functions which are continuous away from the vertices

Continuous functions

Functions which are (infinitely) differentiable away from the vertices

(Infinitely) Differentiable functions on the graph

Infinitely differentiable functions away from the vertices and with
compact support
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Laplace operators

Aim and Task

Find and characterize all self-adjoint operators on

L2(G),

the space of all square integrable functions on G,

which formally equal the second derivative.

Any of them will be called a

Laplace operator on G
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Construction of the Laplace operators

The construction of the Laplace operators will invoke
boundary value conditions.

The general one vertex case

is given by an arbitrary number n = |E| of half lines with one joint vertex

b

E = set of external half-lines e, each ∼= [0,∞).

ψ ∈ L2(G)⇐⇒ ψ = {ψe(x)}e∈E ∈
⊕
e∈E

L2(R+)
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Construction of the Laplace operators

The Hilbert space is L2(G)

with scalar Product

〈ψ,ϕ〉 =
∑
e∈E

∫ ∞
0

ψe(x)ϕe(x)dx .

Choose the domain

D =
{
ψ
∣∣∣ ψe , ψ

′
e , ψ

′′
e ∈ L2([0,∞))

}
.

Define the operator ∆ on D to be the second derivative

(∆ψ)e(x) = ψ′′e (x).

Also let ∆0 equal ∆ restricted to the domain

D0 =
{
ψ ∈ D

∣∣∣ ψe(0) = ψ′e(0) = 0
}
.
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Construction of the Laplace operators

Aim reformulated:
Find all self-adjoint extensions of ∆0

∆0 has defect indices (n, n) (J. von Neumann), so the s.a. extensions may
be parametrized by the unitary matrix group U(n) .

Alternative discussion in terms of boundary conditions:

Introduce the boundary values for any ψ ∈ D

ψ = {ψe(0)}e∈E ∈ Cn

ψ′ = {ψ′e(0)}e∈E ∈ Cn

[ψ] =

(
ψ

ψ′

)
∈ C2n

Schrader (FU-Berlin) Finite propagation speed Erevan, August 2010 11 / 23



Construction of the Laplace operators

Aim reformulated:
Find all self-adjoint extensions of ∆0

∆0 has defect indices (n, n) (J. von Neumann), so the s.a. extensions may
be parametrized by the unitary matrix group U(n) .

Alternative discussion in terms of boundary conditions:

Introduce the boundary values for any ψ ∈ D

ψ = {ψe(0)}e∈E ∈ Cn

ψ′ = {ψ′e(0)}e∈E ∈ Cn

[ψ] =

(
ψ

ψ′

)
∈ C2n

Schrader (FU-Berlin) Finite propagation speed Erevan, August 2010 11 / 23



Construction of the Laplace operators

We look for a self-adjoint extension ∆ of ∆0 with domain satisfying

D0 = D(∆0) ⊂ D(∆) ⊂ D.

Set

ω(ψ,ϕ) = 〈∆ψ,ϕ〉 − 〈ψ,∆ϕ〉,
a hermitian symplectic form on D.

Green’s Theorem (= integration by parts) relates two hermitian
symplectic forms:

ω(ψ,ϕ) = 〈[ψ], J [ϕ]〉C2n

with

J =

(
0 −I
I 0

)
.

For a self-adjoint extension ∆ of ∆0 this has to vanish for any ϕ and ψ in
the domain D(∆).
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Construction of the Laplace operators

Let A and B be two n × n matrices and define the linear spaces

M(A,B) =

{(
a
b

)
∈ C2n

∣∣∣ Aa + Bb = 0

}
(1)

DM(A,B) =
{
ψ ∈ D

∣∣∣ [ψ] ∈M(A,B)
}
⊃ D0 (2)

Let ∆M(A,B) be the restriction of ∆ to DM(A,B).

Theorem There is equivalence:

∆M(A,B) is self-adjoint

M(A,B) is a maximal isotropic subspace of C2n

AB† is self-adjoint and the n × 2n matrix (A,B) has maximal rank.
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Construction of the Laplace operators

These maximal isotropic subspaces satisfy

(i) M(A,B) =M(A′,B ′)
iff there is an invertible C with A′ = CA,B ′ = CB

(ii) Each maximal isotropic subspace M⊂ C2n is of this form:
M =M(A,B) for some A,B.

(iii) The n × n (quantum mechanical) scattering matrix at energy E = k2

SM(A,B)(k) = −(A + ikB)−1(A− ikB)

is unitary for all real k 6= 0 and meromorphic in the complex k-plane.
The poles are located on the imaginary axis and the poles iκ on the
positive imaginary axis are via ε = −κ2 in a one to one correspondence
with the negative eigenvalues of −∆M(A,B).

(iv) Conversely: For any k0 > 0 the matrix SM(A,B)(k0) uniquely fixes
M(A,B). Thus the space of all maximal isotropic subspaces of C2n can
be identified with U(n) (a result obtained independently by V. Arnold).
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Construction of the Laplace operators

Extension to a general metric graph G:
ψ′, ψ′′ = first and second derivatives (away from the vertices).
Operators: (1) ∆ψ = ψ′′ with domain

D =
{
ψ
∣∣∣ ψ,ψ′, ψ′′ ∈ L2(G)

}
(2) ∆0 = restriction of ∆ to

D(∆0) =
{
ψ ∈ D

∣∣∣ ψ and ψ′ vanish at the vertices
}
.

Given ψ ∈ D, the boundary values ψ
v

and ψ′
v

(inward normal derivative)

of ψ and ψ′ at the vertices v again combine to ψ and ψ′ and hence to an
element

[ψ] =

(
ψ

ψ′

)
of C 2(n+2m), where n denotes the number of external and m the number
of internal lines.
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Construction of the Laplace operators

Analogously one introduces matrices Av and Bv as above and maximal
isotropic M(Av ,Bv ) spaces in C2nv (nv = number of edges entering v)
and correspondingly their direct sum

A = ⊕vAv , B = ⊕vBv ,M = ⊕vM(Av ,Bv )

giving rise to a self-adjoint operator ∆M(A,B) with domain

D(∆M(A,B)) =
{
ψ ∈ D

∣∣∣ [ψ] ∈M(A,B)
}
.

The number of negative eigenvalues (with multiplicities) of −∆M(A,B) is
smaller or equal to 2(n + 2m).
Again: All self-adjoint operators on L2(G) may be obtained in this way.
They are all finite rank perturbations of each other.
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Non-negative −∆

Let PM be the orthogonal projection onto M and PMv onto Mv and set

Ω =

(
0 I
0 0

)
ΩM = PMΩPM =

−
(
−B†
A†

)
(AA† + BB†)−1AB†(AA† + BB†)−1(−B,A)

=
∑
v

PMv ΩPMv =
∑
v

ΩMv ,

a hermitian 2(n + 2m)× 2(n + 2m) matrix. Integration by parts gives

〈ϕ,−∆Mψ〉G = 〈ϕ′, ψ′〉G + 〈[ϕ],ΩM[ψ]〉C2(n+2m)

As a consequence −∆M ≥ 0 if ΩM ≥ 0 if AB† ≤ 0.
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Wave equation

For any of the above Laplacians ∆M, by
the spectral representation and operator calculus the
wave operator

WM(t) =
sin t
√−∆M√−∆M

is a bounded self-adjoint operator for all real t as is
∂tWM(t) = cos t

√−∆M.

For any Cauchy data ψ, ψ̇ ∈ L2(G)

ψ(t) = ∂tWM(t)ψ + WM(t)ψ̇

is a solution of the wave equation

�Mϕ(t) = (∂2t −∆M)ψ(t) = 0.

satisfying the initial conditions ψ(t = 0) = ψ, ∂tψ(t = 0) = ψ̇.
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Finite Propagation Speed

Fix a point p0 and let Bt(p0) denote the set of points in G with distance
less or equal to t from p0. Fix t0 > 0 and define the space-time cone

C(t0, p0) = {(t, q) | dist(p0, q) ≤ t0 − t, q ∈ G, 0 ≤ t ≤ t0} ⊂ R+ × G
=

⋃
0≤t≤t0

Bt0−t(p0)

b

G

t

C(t0, p0)

(t0, p0)

ψ(t, p) = 0

Bt0(p0) ψ = ψ̇ = 0
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Finite Propagation Speed

Theorem (finite propagation speed)

If both ψ and ψ̇ vanish on Bt0(p0), then ψ(t)(q) vanishes
for all (t, q) ∈ C(t0, p0).
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Proof of Finite Propagation Speed

The proof follows the standard line but uses an additional new and crucial
ingredient:
For any solution ψ(t) introduce the local energy functional

0 ≤ e(t) =

∫
q∈Bt0−t(p0)

(
|ψ(t)′(q)|2 + |∂tψ(t)(q)|2

)
dq

+
∑

v∈Bt0−t(p0)

〈[ψ(t)],ΩMv [ψ(t)]〉C2(n+2m) .

The first term is familiar from (text book) proofs of finite propagation
speed on smooth manifolds. The second boundary contribution is the new
ingredient.
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This function is piecewise differentiable and monotonically decreasing in t.
To establish this one first has to establish that the boundary values [ψ(t)]
are continuously differentiable in t. This follows by using the assumptions
ψ ∈ D((−∆)2), ψ̇ ∈ D((−∆)3/2) and Sobolev estimates. For t where e(t)
is differentiable, on computes ∂te(t) ≤ 0. At the other points one uses∑

v∈Bt0−t(p)

ΩMv ≤
∑

v∈Bt0−t′ (p)

ΩMv for t ≥ t ′.

But by assumption on the Cauchy data e(t = 0) = 0. Since e(t) ≥ 0 is
monotonically decreasing, this implies e(t) = 0 for all 0 ≤ t ≤ t0. The
definition of e(t) now implies ψ(t)(p) = 0 in the cone C(t0, p0) thus
concluding the proof.
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Outlook

(i) Can the condition ΩM ≥ 0 be dropped?

For a single vertex graph, finite propagation speed can be proved for all
Laplacians ∆M.

———

Consider a metric graph G, which is isometrically embedded in R3, say,
and let T (G) be a tubular neighborhood of G with smooth boundary. Thus

G is a singular deformation retract of T (G).

(ii) Can one relate wave propagation on T (G) to one on G?
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