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0. Introduction
Notations : Comm. relation, Moyal product

[xµ, xν]⋆ = xµ ⋆ xν − xν ⋆ xµ = iθµν, µ, ν = 1, . . . , 2n ,

(θµν): real, x-indep., skew-sym., NC parameters.

f(x)⋆g(x) = f(x)g(x)+
∞∑
n=1

1

n!
f(x)

(
i

2

←−
∂ µθ

µν−→∂ ν

)n

g(x) .

Introduce ~ and a fixed constant θµν0 <∞ with

θµν = ~θµν0
We define the commutative limit by letting ~→ 0.



The curvature two form F :

F :=
1

2
Fµνdx

µ ∧ ⋆dxν = dA+A ∧ ⋆A

where A ∧ ⋆A := 1
2(Aµ ⋆ Aν)dx

µ ∧ dxν.
Instanton is defined by

F+ =
1

2
(1 + ∗)F = 0 ,

∗ : Hodge star.

NC instantons in R4 are discovered by the ADHM
method (Nekrasov-Schwarz).
Many works was done. (Lechtenfeld, Szabo, . . . )



[Known facts of ADHM instantons]:
ADHM data =⇒ Instanton (including U(1))
NC ADHM instanton ♯ = k
It does not depend on the NC parameter
(A.S. -Ishikawa -Kuroki, A.S.,Furuuchi,Tian)
(These are same as comm. instanton)

[Can we expect that ?]:
1．Instanton ♯ are inv. under NC deform. in R4 ?
2. Top. charges in Y-M are preserved in Rn ??

(Vortex, Monopole and so on.)

3. ”ADHM data ⇐⇒ NC Instanton ” is 1 to 1?
4. Can we make U(1) Instanton as Deformation?



(1) NC Deformation of Instantons

Formally we expand A as Aµ =
∞∑
l=0

A(l)
µ ~l.

Using P :=
1 + ∗
2

and covariant derivatives

associated to A
(0)
µ by D(0)f := d f +A(0) ∧ f

l-th order Instanton Eq.

P (D(0)A(l) + C(l)) = 0.



where

C(l)
ρτ :=

∑
(p; m,n)∈I(l)

~p+m+n 1

p !

(
A

(m)
[ρ (
←→
∆ )pA

(n)
τ ]

)
←→
∆ ≡ i

2

←−
∂ µθ

µν
0

−→
∂ ν.

I(l) ≡ {(p; m,n) ∈ Z3|p+m+ n = l,m ̸= l, n ̸= l}.

Note that :
• C(l)

ρτ is consisted of A(k) (k < l). i.e. given fun.
We determine A(l) recursively.

• 0-th order is the comm. instanton Eq.



Asymptotic behavior of comm. instanton A
(0)
µ

A(0) = gdg−1 +O(|x|−2), gdg−1 = O(|x|−1),

where g ∈ G and G is a gauge group.
Fix A(0) and impose a condition for A(l)(l ≥ 1) as

A−A(0) = D∗
A(0)B , B ∈ Ω2

+,

where D∗
A(0) is defined by

(D∗
A(0))

µν
ρ Bµν = δνρD

(0)µBµν − δµρD(0)νBµν.

This is chosen to deform the Eq. into elliptic DE.



We expand B in ~ as B =
∑
B(k)~k.

Using the fact that the A(0) is anti-selfdual,

2D2
(0)B

(l)µν + P µν,ρτC(l)
ρτ = 0, : Main Eq.

where
D2

(0) ≡ D
ρ

A(0)DA(0)ρ .

The Green’s fun.: D2
(0)G0(x, y) = δ(x− y),

G0(x, y) was constructed (Corrigan et.al). Then,

B(l)µν = −1
2

∫
R4
G0(x, y)P

µν,ρτC(l)
ρτ (y)d

4y



and the NC instanton A =
∑
A(l)~l is given by

A(l) = D∗
A(0)B

(l).

Using this, we can prove

|A(l)| < O(|x|−3+ϵ), ∀ϵ > 0

By using this fact, we can prove the following
Theorems.



(2) Instanton ♯ is indep. of ~

1

8π2

∫
trF ∧ ⋆F =

1

8π2

∫
trF (0) ∧ F (0),

Summarizing the above discussions,

Theorem 1. Let A
(0)
µ be a comm. instanton in

R4. There exists a formal NC instanton Aµ =∑∞
l=0A

(l)
µ ~l such that the instanton number is

independent of the NC parameter ~ .



(3) Index of Dirac Op.

The Weitzenbock formula shows that

D̄A ⋆DA = ∆A + σ+F+ ,

DA ⋆ D̄A = ∆A + σ−F− ,

where σ+F+ = 2σ̄µνF+
µν , σ−F− = 2σµνF−µν and

∆A = Dµ ⋆ Dµ.
Lemma 2.KerDA⋆ = 0 for L2 function. i.e. ψ = 0
if DA ⋆ ψ = 0 (ψ(l) ∈ L2).



Next, we investigate the zero modes of D̄A.
~ expansion of ψ̄ ∈ Γ(S− ⊗ E)[[~]]

ψ̄ =
∞∑
n=0

~nψ̄(n)

The 0-th order eq. of D̄A ⋆ ψ̄ = 0 is D̄(0)
A ψ̄(0) = 0.

There are k zero-mode for A(0) : ψ̄
(0)
i (i = 1, . . . , k)

Denote by ψ̄i =
∑∞

n=0 ~nψ̄
(n)
i the zero modes.



The n-th order equation of D̄A ⋆ ψ̄ = 0 :

~n
{
D̄(0)
A ψ̄

(n)
i +H

(n)
i

}
= 0,

where

H
(n)
i = σ̄ρA(n)

ρ ψ̄
(0)
i +

∑
(p; l,m)∈I(n)

1

p !

(
σ̄ρA(l)

ρ (
←→
∆ )pψ̄

(m)
i

)
Homogeneous part has k zero modes : ηi .
We obtained the following.



Theorem 3.Let ψ̄ = (ψ̄i) be a zero mode of D̄A⋆ as

above. Then

ψ̄
(n)
i =

k∑
j=1

ajn,iηj −
1

D(0)
A D̄

(0)
A

D(0)
A H

(n)
i ,

ηj = O(|x|−3), 1

D(0)
A D̄

(0)
A

D(0)
A H

(n)
i = O(|x|−5+ϵ),

and

ψ̄i =
∞∑
n=0

(
k∑
j=1

ajn,iηj)~
n +O(|x|−5+ϵ) , ηj = O(|x|−3).



Theorem 4.
If Ind D̸0 := dim kerD(0)

A − dim kerD̄(0)
A = −k,

then Ind D̸⋆ := dim kerDA ⋆−dim kerD̄A⋆ = −k .



(5) From Instanton to ADHM

Completeness
Let us introduce ⋆x as ⋆ associated with variable x.

⋆x ψ̄(x)ψ̄
†(y)⋆y = ⋆xδ(x− y) ⋆y − ⋆x DA ⋆x GA(x, y) ⋆y

←−̄
DA⋆y,

where ∆A ⋆ GA(x, y) = δ(x− y).
Derivation of ADHM equations

T µ :=

∫
R4
d4x

1

2

(
xµ ⋆ ψ̄† ⋆ ψ̄ + ψ̄† ⋆ ψ̄ ⋆ xµ

)



T µT ν =
1

4

∫
R4
d4xψ̄† ⋆ ψ̄ ⋆ xν ⋆ xµ

−1
4

∫
S3
dSρx

∫
R4
d4y(xµ ⋆x ψ̄

†(x)σρ) ⋆x GA(x, y) ⋆y (σ̄
νψ̄(y)) + · · ·

where dSµx = |x|2xµdΩ and dΩ is the solid angle.

• Introduce an asymptotically parallel section g−1S
of S+ ⊗ E by

ψ̄ = −g
−1Sx†

|x|4
+O(|x|−4).

Note that A→ g−1 ⋆ dg, Dµ ⋆ g
−1→ 0 at r →∞.



• Using the asymptotic behavior, 2nd becomes

1

8
tr(S†Sσ̄µσν),

where tr is trace with respect to spinor suffixes.

• In the [T µ, T ν]+ combination, 1st becomes −θµν+.
Finally we get ADHM Eqs.

[T µ, T ν]+ =
1

2
tr(S†Sσ̄µν)− θµν+



Completeness and Uniqueness
We can prove the one to one correspondence between
the ADHM data and the Instanton solution.

• Instanton ⇒ ADHM ⇒ Instanton

• ADHM ⇒ Instanton ⇒ ADHM



(6) NC U(1) Instantons

There is no U(1) instanton in the commutative limit,
therefore we change the strategy of formal expansion.
We set

H(n) := {f |||f || := sup
x∈R4

(1 + |x|)n+α|∂αxf(x)| <∞,

sup
x∈R4

(1 + |x|)n+α+1|∂αxf(x)| =∞ for any α ∈ N≥0 lim},

H(n) := {f(x)|f(x) =
∞∑
k=n

f [k](x), f [n](x) ̸= 0}.



ex) Formal expand. Aµ =
∑∞

k=nA
[k]
µ ∈ H(n)

• Aµ ∈ H(1) case (roughly Aµ ∼ O(1/|x|))
Let us solve Pµν,ρτF

ρτ = 0. recursively.
The leading and Next leading (2nd and 3rd order)

P µν,ρτ(∂ρA
[i]
τ − ∂τA[i]

ρ ) = 0. (i = 1, 2)

By using an arbitrary scalar field ϕ ∈ H(0), we solve
this equation as

A[i]
µ = ∂µϕ

[i−1]



The 4-th order Eq. is

P µν,ρτ(∂ρA
[3]
τ − ∂τA[3]

ρ + i[A[1]
ρ , A

[1]
τ ]←→

∆
) = 0,

where [A,B]←→
∆

:= A
←→
∆B −B

←→
∆A. The solution :

Aµ[3] = −i∂ν
∫
R4
G(x, y)P µν,ρτ [A[1]

ρ , A
[1]
τ ]←→

∆
(y)d4y.

A[l](l ≥ 4) is determined by the same way.

But this solution dose not make non-zero instanton
number. Because instanton number is unchanged
under deformation

A[1]
µ → A[1]

µ +O(|x|−3).



(7) New NC U(1) Instantons

• Aµ ∈ H(0) case (roughly Aµ ∼ O(1/ log |x|)

The 1st order Eq. is given by

P µν,ρτ(∂ρA
[0]
τ − ∂τA[0]

ρ ) = 0.

By using an arbitrary scalar field ϕ ∈ H(−1),

A[0]
µ = ∂µϕ

[−1]



The next leading (2-th order) Eq. is given by

P µν,ρτ(∂ρA
[1]
τ − ∂τA[1]

ρ + i[A[0]
ρ , A

[0]
τ ]←→

∆
) = 0.

By using the similar way of the previous case,
we obtain

Aµ[1] = −i
∫
R4

∂

∂yν
G(x, y)P µν,ρτ [A[1]

ρ , A
[1]
τ ]←→

∆
(y)d4y.

A[l](l ≥ 2) is determined recursively.
Thus we obtain non-trivial U(1) instantons.



Let us consider F =

∞∑
k=1

F [k] of this instanton.

Note that F [1] = 0 since of A[0]. F [2] is given as

F [2] = ∂µA
[1]
ν − ∂νA[1]

µ + i[A[0]
ρ , A

[0]
τ ]←→

∆
.

Therefore instanton number is given by

1

8π2

∫
tr F ∧ ⋆F =

1

8π2

∫
tr F [2] ∧ ⋆F [2].



We rewrite instanton ♯ ”
1

8π2

∫
trF ∧ ⋆F” as

1

8π2

∫
d(A ∧ ⋆dA+

2

3
A ∧ ⋆A ∧ ⋆A+) +

1

8π2

∫
P⋆

where

P⋆ = A ∧ ⋆A ∧ ⋆A ∧ ⋆A+ · · ·∫
P⋆ is 0 in the commutative case, but does not

vanish in noncommutative space in general.



Example of NC U(1) instanton

For simplicity, we set the NC parameter as

θ =


0 h 0 0

−h 0 0 0

0 0 0 p

0 0 −p 0

 ,

which does not break generality.



We put

ϕ[−1](x) =

∫ |x|

0

1

log(e+ |x|)
d|x| ∈ H(−1),

in other word

A[0]
µ =

xµ
|x| log(e+ |x|)

.

Then A ∧ ⋆A ∧ ⋆A ∧ ⋆A is obtained as

− 8hp

{log(e+ |x|)}5|x|3 (e+ |x|)
+O(|x|−6).



Its integration over R4 is done easily as∫
R4
A ∧ ⋆A ∧ ⋆A ∧ ⋆A

∼ −
∫
R4
d4x

8hp

{log(e+ |x|)}5|x|3 (e+ |x|)
= −2hp× 2π2 = −4π2hp.

Note that
the instanton ♯ is deformed by the NC parameter.
This future is different from ADHM instantons.



(8) Deformation of Vortex

Theorem 5. (A0, ϕ0) satisfy the Vortex Eqs.

Then there exists a unique solution (A,ϕ)

of the NC vortex equations with A|~=0 =

A0, ϕ|~=0 = ϕ0, and its vortex number is

preserved:

N = N0 , i.e.
1

2π

∫
d2x B =

1

2π

∫
d2x B0 .



(9) Conclusions
• The Smooth NC Deformation of Instanton exists.

• The Instanton Number is not deformed in R4.
• The Index theorem is not deformed.
• The Green’s function exists.
• The ADHM Eqs. are derived.
1 to 1 of ADHM⇔Instanton exists

• The NC U(1) instanton is constructed by
deformation quantization

• Instanton ♯ depend on NC parameter.

• The Smooth NC Deformation of Vortex exists
and it’s Uniquely Determined.

• The Vortex Number is not deformed in R2.


