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0. Introduction

xt x|, =t xat — ¥ xaxt =10", pv=1,...,2n,
(07"): real, z-indep., skew-sym., NC parameters.

Fla)xg(@) = fF@)g(2)+ "~

n=1

f(2) (nga)”g<x> |

n!

Introduce % and a fixed constant 6" < oo with
0" = hoL”

We define the commutative limit by letting h — 0.



The curvature two form F' :
1
F = §Fwdqj“ A xdx” =dA+ ANxA

where A N xA := %(Au * Ay)dxt N dx?.
Instanton is defined by

1

x . Hodge star.

NC instantons in R* are discovered by the ADHM
method (Nekrasov-Schwarz).

Many works was done. (Lechtenfeld, Szabo, ...)



[Known facts of ADHM instantons|:

ADHM data = Instanton (including U(1))
NC ADHM instanton f = k

It does not depend on the NC parameter
(A.S. -Ishikawa -Kuroki, A.S.,Furuuchi, Tian)

(These are same as comm. instanton)

Can we expect that ?]:
10 Instanton § are inv. under NC deform. in R* ?

2. Top. charges in Y-M are preserved in R" 77
(Vortex, Monopole and so on.)

3. "ADHM data <= NC Instanton " is 1 to 17
4. Can we make U(1) Instanton as Deformation?




(1) NC Deformation of Instantons

Formally we expand A as A,, = Z Ag)hl

_ 1+ % . L.
Using P := and covariant derivatives

associated to ALO) by DOf:=d f+ AO A f
[-th order Instanton Eq.

P(DYAN 4 ¢y =



1 —
(1) ._ +m+n_~ [ 4(m) (n)
Cl= D p!(A[p (M)A
(5 mn)el (1)
R
A = 20,003,
I() = {(p; m,n) € Zlp+m+n=1,m#1,n#l}

Notel that :
° CéT) is consisted of A% (k < ). i.e. given fun.

We determine AW recursively.
e 0-th order is the comm. instanton Eq.



Asymptotic behavior of comm. instanton ALO)

A = gdg™ + O(|z[7%), gdg™" = O(|z|™),

where g € G and G is a gauge group.
Fix A9 and impose a condition for AY(l > 1) as

A-AY =p* B, BeQ

A(O

where D, ) is defined by
(D* )4 By = 8:DY"B,, —s'D"B,,

This is chosen to deform the Eq. into elliptic DE.



We expand B in has B =Y B®h*.
Using the fact that the A is anti-selfdual,

ZD%O)B(Z)W + P’“’WCST) =0,| : Main Eq.

where

D) = D’y D 40, -

The Green's fun.: D, Go(,y) = d(z — y),
Go(x,y) was constructed (Corrigan et.al). Then,

1
BWOur 2/R4 Golz, y)pWPTc()( )d4y



and the NC instanton A = > AWR! is given by
[ >|< [
A — DA(O)B()'

Using this, we can prove

AD| < O(|z|3+¢), Ve >0

By using this fact, we can prove the following
heorems.




(2) Instanton t is indep. of h

1 1 0 0

Summarizing the above discussions,

Theorem 1. Let A,(P) be a comm. wnstanton in
R*. There exists a formal NC instanton A, =

Z?io A,(f)hl such that the instanton number 1s
independent of the NC parameter h .




(3) Index of Dirac Op.

The Weitzenbock formula shows that

@A*DA:AA—I—U+F+,
DA*ﬁA:AA—I—O'_F_,
where o"F" = 20" F} , o F" = 20"F,, and
AA:D”*DM.

Lemma 2. KerDx = 0 for L? function. i.e. 1) =0
if Dax1p =0 (v e L?).



Next, we investigate the zero modes of Dy.
h expansion of ¥ € I'(S™ ® E)[[A]]

b3 wi
n=0
The 0-th order eq. of Dy %1 =0 is 751(4?)15(0) = 0.

There are k zero-mode for A : 1@7;(0)(75 =1,...,k)
Denote by 9; = > 2 h”zﬁz(n) the zero modes.




The n-th order equation of Dy % =0 :

e { DY + 1M} =0,

n - 1
Hz'( ) _ 5.,0A(n)¢§0) 4 Z _((—,pA(z)(

(p; I,m)el(n)

Homogeneous part has k£ zero modes : 7); .
We obtained the following.



Theorem 3. Let 1p = (v);) be a zero mode of Dax as
above. Then

~(n ' 1 (0) 74(n)
wi | — 0[77,&,2-77] 0).=(0 DA H@ ?
Zj_l pOpHO
_ 1 (0) 77(n) 5ae
Ny = O(’ZE‘ 3)7 0).~(0 DA Hz T O(‘LE’ )7
DYDY
and
00 k




Theorem 4.
If Ind D" := dim kerDﬁ)) — dim ker@g)) = —k,
then Ind IPx := dim kerD4 x —dim kerDgx = —k .




(5) From Instanton to ADHM

Let us introduce %, as x associated with variable x.

_ _ —
%0 Y() (y)xy = %:0(x — ) %y — *; Daky Gal@,y) %, Daxy,

where Ay x Ga(x,y) = d(x —y).

T = / d4a:1(:13”*@ﬁ*@5—|—@ﬁ*&*x“)
R4 2



1
THTY = — /d%zﬁ*w*x *

1 p 4, (ot *, (671
_Z/S /d " %, W (x)o,) %z Ga(x,y) %y (67 (y)) +

where dS* = |z]?z*dQ) and dfQ is the solid angle.

e Introduce an asymptotically parallel section ¢g=1S
of ST ® E by

1 t
- g Sz B
V=" 0,

Note that A — g~ ' xdg, D, xg* — 0 at r — .



e Using the asymptotic behavior, 2nd becomes

1
Str(S155"")

where tr is trace with respect to spinor suffixes.
e In the [T#,T”]" combination, 1st becomes —0"" .

Finally we get ADHM Eqgs.

1
T+, T = §tr(STS5W) — ot



We can prove the one to one corresponder)ce between
the ADHM data and the Instanton solution.

e Instanton = ADHM = Instanton

¢ ADHM = Instanton = ADHM



(6) NC U(1) Instantons

There is no U(1) instanton in the commutative limit,
therefore we change the strategy of formal expansion.
We set

H(n) == {fl[lf]| -= SU@(l + [2])"07 f ()| < oo,
re
sup (1 + |z|)" 1% f(x)| = oo for any a € N> lim},

reR4
00

H(n) == {f(2)|f(z) =) fH), f"(z) #0}.

k=n



ex) Formal expand. A, => " A e H(n)

o A, € H(1) case (roughly A, ~ 0(1/\.7;]))
Let us solve P, ,-F*" = 0. recursively.

The leading and Next leading (2nd and 3rd order)
P (9,44 — 9, Ay = 0. (i =1,2)

By using an arbitrary scalar field ¢ € H(0), we solve
this equation as

Ak] — (%gb[i_l]



The 4-th order Eq. is
prm(9,AB — 9 AB (Al Al]) =

where |A, B« 1= A
AMBl = 9, G(x,y)PHrrA), AL ]X(y)d4y.

Al(1 > 4) is determined by the same way.

But this solution dose not make non-zero instanton
number. Because instanton number Is unchanged

under deformation

1 1 —3
A — A+ O(|2] 7).



(7) New NC U(1) Instantons

o A, € H(0) case (roughly A, ~ O(1/log |z|)

The 1st order Eq. Is given by
Pt (9,40 — 9, AV) = 0.
By using an arbitrary scalar field ¢ € H(—1),

AE)] — 3ﬂ¢[—1]



The next leading (2-th order) Eq. is given by

prrt(9,AM — 0, AN + (A0 A1) = 0.

By using the similar way of the previous case,
we obtain

= —Z/R4 G(z,y) P AN, Al (y)dy.

A1 > 2) is determined recursively.
Thus we obtain non-trivial U(1) instantons.



Let us consider F' = Z F* of this instanton.
k=1
Note that FIU = 0 since of A", FPl s given as

P =9,A1 9,41 1A

v T

0] A0,

p o X

herefore instanton number is given by

1 1 5 5



1
We rewrite instanton § " @/trF A *F" as
™

1 2 1
—/ d(AN*xdA+ -AN*xAN*xA+) | /P*
872 3 2

where

P, = ANxAN*AN*A+---

[ P, is 0 in the commutative case, but does not
vanish in noncommutative space in general.



For simplicity, we set the NC parameter as

[0 h 0 0)
g_ | ~h 0 0 0
00 0 p |’
L 0 0 —p 0

which does not break generality.



We put

[ 1
o0@) = | el € H-D),

In other word

Al — il |
" |zllog(e + |z|)

Then AANxA N %A A XA is obtained as

8hp
{log(e + |z]) F|z[* (e + |z])

-O(J2[ ).



Its integration over R* is done easily as

/‘AA*AA*AA*A
Rél

_/ g 8hp
re ogle + [z])}°|z]” (e + [x])
= —2hp x 21% = —Amwhp.

Note that _
the instanton f is deformed by the NC parameter.

his future i1s different from ADHM instantons.




(8) Deformation of Vortex

Theorem 5. (A, ¢y) satisfy the Vortex Eqgs.
Then there exists a unique solution (A, @)

of the NC wvortex equations with Alj—g =
Ay, @lr—0 = ¢o, and its vortex number is

preserved:

1 1
N=N,, i.e. —/dQ:cB:—/deBO.
2T 27




B ’&9) Conclusions |
he Smooth NC Deformation of Instanton exists.

he Instanton Number is not deformed in R*.
ne Index theorem i1s not deformed.
he Green's function exists.

The ADHM Eqs. are derived.
1 to 1 of ADHM = Instanton exists

e The NC U(1l) instanton is constructed by
deformation quantization

e Instanton f depend on NC parameter.

e The Smooth NC_Deformatjon of Vortex exists
and it's Uniquely Determined.

e The Vortex Number is not deformed in R?.



