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The N = 4 super Yang-Mills theory

The N = 4 SYM is a four-dimensional gauge theory with four
different supersymmetry generators.

The building blocks of the theory are: Φm, Ψαa, Ψ̇a
α̇ und Aµ.

The gauge group is SU(N) and the fields transform in the adjoint
representation (U(x) ∈ SU(N)){

Φ; Ψ; Ψ̇
}
7→ U

{
Φ; Ψ; Ψ̇

}
U−1, Aµ 7→ UAµU−1−ig−1 ∂µU U−1 .

The Lagrangian reads

LYM = Tr
(

1
4
FµνFµν +

1
2
DµΦnDµΦn −

1
4

g2[Φm,Φn][Φm,Φn]

+Ψ̇a
α̇σ

α̇β
µ DµΨβa −

1
2

igΨαaσ
ab
m εαβ[Φm,Ψβb]

−1
2

igΨ̇a
α̇σ

m
abε

α̇β̇[Φm, Ψ̇
b
β̇

]

)
.
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Due to a large amount of supersymmetries the beta function
vanishes and the theory exhibits superconformal symmetry also at
the quantum level. The global symmetry algebra gets extended
so(1,3)⊕ so(6)→ psu(2,2|4).

There are no asymptotical distances and thus the physical
S-matrix cannot be defined. Correlation functions are well defined.
Interesting observables are AD of the composed operators

O(x) = Tr (Φ Ψ ∗ ∗ . . .) ,

which receive quantum contributions

∆(g) = ∆0 + γ(g) .

The full dimensions are eigenvalues of the dilatation operator

DO(x) = ∆O(x)(g)O(x) .
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Huge mixing problem!

O(x) = c1 Tr (Φ Ψ ∗ ∗ . . .) + c2 Tr (Ψ Φ ∗ ∗ . . .) + . . . .

There exist close subsectors with respect to the action of D. The
su(2) is the simplest example

Tr
(
XM ZL−M

)
+ all inequivalent permutations of X and Z .

The usual perturbative expansion applies

D =
∑

n

D2n(N)g2n .

Even more symmetries appear in the planar limit
(N →∞ ,g2 =

g2
YMN

16π2 = const)

psu(2,2|4)→ psu(2,2|4) n u(1)∞ .
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More precisely, the dilatation operator is a member of an infinite
family of commuting charges.

This was rigorously proven for few first orders of perturbation theory
and some subsectors in the asymptotic region ( ` < L ) .

[N.Beisert ’03], [N.Beisert, V.Dippel, M.Staudacher ’04],[B.Zwiebel ’05], ...
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No interactions

Tr (X Z Z Z X Z X Z)
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One-loop

Dsu(2)
2 =

∑
i

1
2

(1− ~σi ~σi+1)
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Two-loop

Dsu(2)
4 =

∑
i

(−(1− ~σi ~σi+1) +
1
4

(1− ~σi ~σi+2))
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Wrapping!

Dsu(2)
16 = ???
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More precisely, the dilatation operator is a member of an infinite
family of commuting charges.

This proven rigorously for few first orders of perturbation theory and
some subsectors in the asymptotic region ( ` < L ) .

[N.Beisert ’03], [N.Beisert, V.Dippel, M.Staudacher ’04],[B.Zwiebel ’05], ...

Whether this feature persists for arbitrary operators is still unclear.

The mixing problem in the asymptotic region can be solved by
means of the methods of solid state physics

dilatation operator of the planarN = 4 SYM = Hamiltonian of an integrable spin chain .

The corresponding spin chain exhibits many novel features, when
compared to the usual spin chains considered in the literature:
long-rangeness of the interactions increases with the order of the
perturbation theory, length fluctuations, ...
... but this spin chain is still integrable and can be solved by
means of the Bethe ansatz:
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The excitation numbers Ki , i = 1, . . . ,7 are uniquely specified by
the eigenvalues of the elements of the Cartan algebra of
psu(2,2|4).

The x±(u) variables are defined by: [N.Beisert, V.Dippel, M.Staudacher ’04]

x(u) =
u
2

(
1 +

√
1− 4 g2

u2

)
, x± = x(u ± i

2
).

The eigenvalues of the higher conserved charges are given by

Qr =
i

r − 1

K4∑
j=1

(
1

(x+(uj ))r−1 −
1

(x−(uj ))r−1

)
.

The second of these charges Q2 corresponds to the eigenvalue of
the dilatation operator (D − D0)

γ(g) = 2 g2 Q2 .
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String theory on AdS5 × S5 product space

The IIB string theory on the super coset space PSU(2,2|4)
SO(5)×SO(4,1) has

the same symmetry group as the N = 4 SYM theory.

The bosonic subspace is AdS5 × S5. The radii of the both
components are equal (R).

The integrability of the classical equations of motion has been
proven rigorously. [I.Bena, J.Polchinski, R.Roiban ’03]

The quantization of the theory is, however, not understood.

In some limits semiclassical quantization can be applied.
[S.Frolov, A.Tseytlin ’02]
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The AdS/CFT correspondence

According to the proposal of J. Maldacena (1997) the both
theories are equivalent under following identification of the
parameters

gs=
4πg2

N
,

R2

α′
=4πg . (1)

In particular: ∆ = E !
There exist various formulations of the AdS/CFT duality

The strongest claims the equivalence of the both theories for
arbitrary values of the parameters in (1).

⇒ In the weaker formulation the equivalence is expected in the planar
limit (N →∞ , g = const) only.
Yet a different possibility is the coincidence of the asymptotic
expansion in 1

N of both theories but not of the non-perturbative
corrections...
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Spectral equations

Recently, the techniques of Thermodynamic Bethe Ansatz have
been applied to the planar AdS/CFT.

If a two-dimensional sigma model is asymptotically integrable and
the mirror model (τ ↔ σ) is asymptotically integrable, one can
solve the former by determining the spectrum of the mirror model
in the infinite volume limit!

The mirror model for the planar AdS/CFT has been extensively
studied and the infinite volume solution (string hypothesis) has
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In its functional form, the spectral equations read:

Y +
a,sY−a,s

Ya+1,sYa−1,s
=

(1 + Ya,s+1)(1 + Ya,s−1)

(1 + Ya+1,s)(1 + Ya−1,s)

The scaling dimension is then equal to

∆ = ∆0 +
∑

j

ε1(u4,j) +
∞∑

a=1

∫ ∞
−∞

du
2πi

∂ε∗a
∂u

log (1 + Y ∗a,0(u)) ,

with εa(u) = 2ig
(

1
x [+a] − 1

x [−a]

)
and f [a](u) = f (u + ia/2).

The finite size Bethe equations are defined by Y1,0(u4,j) = −1.

The leading solution to the above equations was found by
matching with the asymptotic Bethe equations

Y leading
a,0 (u) = main equation[a](u)

They should allow to compute the scaling dimension of any local
operator of the planar N = 4 gauge theory!
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Outlook

The asymptotic Bethe equations together with the TBA equations /
Y-system equations are a very likely to be the solution of the
spectral problem of the planar AdS/CFT correspondence.

Two main activities in the field: testing and extracting results

This has already allowed to compute numerous interesting results
The ADs of all operators up to order O(g2L)
The cusp anomalous dimension of twist operators TrDMZL

[Beisert, Eden, Staudacher, 2006], [Freyhult, Zieme, 2006], [Roiban, Tseytlin, 2008]

∆− L−M = f (g) log M + BL(g) +O( 1
M )

Five-loop AD of Konishi operator and twist-two operators
[Bajnok, Hegedus, Janik, Łukowski, 2009], [Łukowski, Rej, Velizhanin, 2009]

The Konishi AD at intermediate and large values of coupling
[Gromov, Kazakov, Vieira, 2009], [Frolov, 2010]

All string theory quasiclassical one-loop results were re-derived
from the TBA equations [Gromov, Kazakov, Tsuboi, 2009]
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... and many more...
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