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INTRODUCTION/PLAN

Fuzzy spaces provide approximations to a differential manifold in terms

of finite-dimensional matrices. What can they tell us about gravity?

Fuzzy spaces-quantum Hall effect connection

Extending the quantum Hall effect to higher dimensions, primarily to CPk

• Lowest Landau level as a fuzzy space, copy of CPk

• Dynamics for the lowest Landau level

I Bulk dynamics =⇒ Kähler-Chern-Simons action

I Edge dynamics =⇒ Generalized WZW action

General result for the large N limits of the Chern-Simons one-formZ
dt Tr D0 =⇒ SCS(A0,Ai)

Matrix model Continuous field theory

A0, Ai parametrize the different large N limits
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INTRODUCTION/PLAN (cont’d.)

Comment on relation to Bergman metric

Gauge fields correspond to gauging of isometries =⇒ gravity

Evolution of states for space∼ evolution of states for matter

Fuzzy spaces lead to Chern-Simons gravity (almost unique)

Gravity arises as an optimization: How do we choose the “best” large N limit to simplify

the dynamics of other (matter) systems?

Comment on how Minkowski signature can arise
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QHE-FUZZY SPACE CONNECTION

Fuzzy spaces can be defined by the triple (HN ,MatN ,∆N )

• HN = N -dimensional Hilbert space

• MatN = matrix algebra of N × N matrices which act as linear transformations on

HN

• ∆N = matrix analog of the Laplacian.

In the large N approximation

• HN −→ Phase spaceM

• MatN −→ Algebra of functions onM

• ∆N −→ needed to define metrical and geometrical properties.

MF ≡ (HN ,MatN ,∆N ) defines a noncommutative and finite mode approximation to

M.

Quantum Hall Effect on a compact spaceM, lowest Landau level∼ HN

Observables restricted to the lowest Landau level ∈ MatN

Can we utilize this to study fuzzy spaces by analyzing QHE?
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A SIMPLE FUZZY SPACE S2
F

Consider the (n + 1)× (n + 1) angular momentum matrices J a , n = 2j

Define

X a =
J ap

j(j + 1)

These obey

X aX a = 1

Functions of these matrices are functions of 1, X a , X (aX b) − 1
3 δ

ab, · · · ; there are (n + 1)2

independent functions for a basis.

This agrees with

f (S2) =
nX
0

flmY l
m(θ, ϕ),

nX
0

(2l + 1) = (n + 1)2

Further, when n→∞,

[X a ,X b] = iεabc X cp
j(j + 1)

=⇒ 0
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LANDAU PROBLEM ON CPk

HU AND ZHANG introduced QHE on S4 where the background magnetic field = SU(2)

“instanton”

We will start by generalizing to arbitrary even dimensions

QHE on CPk (U(1) and SU(k) background fields) (KARABALI, NAIR)

CPk is given as

CPk =
SU(k + 1)

U(k)
∼

SU(k + 1)

U(1)× SU(k)

This allows the introduction of constant background fields which are valued in

U(k) ∼ U(1)⊕ SU(k)

Useful comparison:

Minkowski = Poincaré/Lorentz
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LANDAU PROBLEM ON CP1

Since CP1 ∼ S2 = SU(2)/U(1), start with choosing g = exp(iσ · θ/2) ∈ SU(2) as

coordinates for the space (and a gauge direction).

Wave functions are given by the WignerD-functions

D(j)
ms(g) = 〈j,m| exp(iJ · θ)|j, s〉

subject to a condition on s.

Define right translations as Ra g = g ta .

The covariant derivatives D± = iR±/r . Since

[R+,R−] = 2R3 =⇒ [D+,D−] = −
2R3

r2

we must choose R3 to be−n for the Landau problem.

This corresponds to a field a = in Tr(t3g−1dg).

V.P. NAIR Landau Levels & Fuzzy Gravity August 26, 2010 7 / 32



LANDAU PROBLEM ON CP1 (cont’d.)

The wave functions are thus

Ψm(g) ∼ D(j)
m,−n(g)

Choose the Hamiltonian as

H =
1

4mr2
[R+R− + R−R+]

The left action

La g = ta g

commutes withH and corresponds to “magnetic translations”.

The lowest Landau level (LLL) has the further condition (holomorphicity condition)

R−Ψm(g) = 0

LLL states also correspond to co-adjoint orbit quantization of a = in Tr(t3g−1dg).
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QHE ON CPk

On CPk one can have “constant” background magnetic fields in U(1) or U(k) (field

strengths∼ Riemannian curvature∼ U(k) structure constants)

CPk = SU(k + 1)/U(k) ∼ SU(k + 1)/{U(1)× SU(k)}

Parametrize using the (k + 1)× (k + 1) matrix, g ∈ SU(k + 1), with g ∼ gh, h ∈ U(k)

The constant fields correspond to

a = in

s
2k

k + 1
Tr(tk2+2k g−1dg), U(1) field

Āa = 2i tr(tag−1dg), SU(k) field

ta ⊂ SU(k), a = 1, · · · , k2 − 1

tA tk2+2k ⊂ U(1)

tα ⊂ coset t+I , t−I
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QHE ON CPk (cont’d.)

Wave functions form SU(k + 1) representations; expressed in terms of Wigner

D-functions

Ψ ∼ D(J)
L,R(g) = 〈L | ĝ |R 〉

quantum numbers characterizing states in J -representation

Abelian case (U(1) background field)

Under U(1)R : a → a − nk√
2k(k+1)

dθ

Under SU(k)R : a → a

Ψm ∼ 〈m | ĝ |Ra = 0,Rk2+2k = −
nkp

2k(k + 1)| {z } 〉
m = 1, · · · ,dim J SU(k)R singlet with fixed U(1)R charge
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QHE ON CPk (cont’d.)

Nonabelian case (U(k) background field)

Āa transforms under SU(k)R →wave functions carry SU(k)R charge

Ψa′
m ∼ 〈 m | ĝ |R 〉

m = 1, · · · ,dim J SU(k)R repr. J ′ with fixed U(1)R charge

a′ internal gauge index =1, · · · ,N ′ = dim J ′

The Hamiltonian can be taken as

H =
1

2MR2

kX
I=1

R+I R−I + constant

=
1

2MR2

ˆ
CSU(k+1)

2 (J)− CSU(k)
2 (J ′)−

n2k

2(k + 1)

˜
For the lowest Landau level, R−I Ψ = 0 (holomorphicity condition).
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LLL HILBERT SPACE

In the Abelian case

Ψ ∈ symmetric rank n representation J

N = dimJ =
(n + k)!

n!k!
→

nk

k!

These are coherent states for CPk

Think of CPk as a phase space, quantization leads to the finite dimensional Hilbert space

of LLL states.

LLL of CPk with U(1) ≡ “fuzzy” CPk

In the large N limit, matrices which are operators on LLL states become functions on CPk

This gives an approach to building smooth spaces as large N limits of finite-dimensional

Hilbert spaces

A similar story for the nonabelian case.
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MATRIX FORMULATION OF LLL DYNAMICS

The LLL has N available states, K occupied by fermions, 1� K � N

Form a QH droplet, specified by the density matrix: ρ̂0 =
PK

i=1 |i〉〈i|,

ρ̂0 =

1

1

1

0

0

K

N − K

Under time evolution: ρ̂0 → ρ̂ = Û ρ̂0Û†

Û = N × N unitary matrix: ”collective” variable describing all LLL excitations

The dynamics is given by

S =

Z
dt Tr

h
iρ̂0Û†∂t Û − ρ̂0Û†V̂ Û

i
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MATRIX FORMULATION OF LLL DYNAMICS (cont’d.)

This leads to the evolution equation for density matrix

i
dρ̂

dt
= [V̂ , ρ̂]

(No explicit dependence on properties of space on which QHE is defined, abelian or

nonabelian nature of fermions etc)

The symbol for a matrix is

X (~x, t) =
1

N

X
m,l

Ψm(~x)Xml(t)Ψ∗l (~x)

X a′b′ (~x, t) =
1

N

X
m,l

Ψa′
m (~x)Xml(t)Ψ∗b′

l (~x), a′, b′ = 1, · · ·N ′ = dimJ ′

We seek a simplification at large N in terms of the symbol for U .
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MATRIX FORMULATION OF LLL DYNAMICS (cont’d.)

This utilizes the usual rules,

ρ̂0, Û , V̂| {z } =⇒ ρ0(~x),U(~x, t),V (~x)| {z }
(N × N ) matrices Symbols

Matrix multiplication =⇒ * product

Trace operation Tr =⇒ N
R

dµ`
Ô1Ô2

´
symbol = O1(~x, t) ∗ O2(~x, t)

For example, the star product can be written as

A(g) ∗ B(g) =
X

s

(−1)s
»

(n − s)!

n!s!

– nX
i1+i2+···+ik=s

s!

i1!i2! · · · ik !
R̂i1
−1R̂i2
−2 · · · R̂

ik
−k A(g)

× R̂i1
+1R̂i2

+2 · · · R̂
ik
+k B(g)
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EDGE & BULK EFFECTIVE ACTIONS

Bosonic action can be written in terms of G ∈ U(N ′)

S =
1

4π

Z
∂D

Tr
h“

G†Ġ + ω G†LG
”

G†LG
i

+
1

4π

Z
D

Tr
h
−d
“

iĀdGG† + iĀG†dG
”

+
1

3

“
G†dG

”3i„ Ω

2π

«k−1

| {z }
WZW-term in 2k + 1 dim

L = 1
n (Ω−1)ij r̂jDiφ = covariant derivative along the boundary droplet

In the presence of gauge interactions

S = N
Z

dt dµ tr
h

iρ0 ∗U† ∗ ∂t U − ρ0 ∗U† ∗ (V +A) ∗U
i

= Sedge + Sbulk

Invariance under U(N ) rotations δÛ = −iλ̂ Û implies that S is invariant under

δU = −iλ ∗U

δA(~x, t) = ∂tλ(~x, t)−i (λ ∗ (V +A)−(V +A) ∗ λ)
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EDGE & BULK EFFECTIVE ACTIONS (cont’d.)

We need the above transformation to be induced by

δA = ∂Λ + i[Ā + A,Λ]

A = function(Aµ, Āµ,V )

λ = function(Λ,Aµ, Āµ)

A = A0 −
i

2n
g ij [Ai , 2DiA0 − ∂0Ai + i[Ai , A0]] +

1

4n
(Ω−1)ij{Ai , 2Dj A0 − ∂0Aj + i[Aj , A0]}

+uiAi −
i

2n
g ij [Ai , Ak ] ∂j uk +

1

4n
(Ω−1)ij{Ai , Ak}∂j uk

−
i

2n
g ij ˆAi , 2Dj Ak − Dk Aj + i[Aj , Ak ] + 2F̄jk

˜
uk

+
1

4n
(Ω−1)ij{Ai , 2Dj Ak − Dk Aj + i[Aj , Ak ] + 2F̄jk }uk

+
1

2n2
g ik(Ω−1)jl `DiAj +Dj Ai

´
∇k∂l V + · · ·

where ui = 1
n (Ω−1)ij∂j V

Relation betweenA and A is essentially the Seiberg-Witten transformation
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EDGE & BULK EFFECTIVE ACTIONS (cont’d.)

Sedge ∼ SWZW
`

AL = A + Ā ,AR = Ā
´

= chirally gauged WZW action generalized in 2k
“
∂(droplet) + time

”
dimensions

The bulk action is

Sbulk =
(−1)k+1

(2π)k k!

Z
tr
»

A (−nΩ)k

+
k

2

„
(A + Ā + V )d(A + Ā + V ) +

2i

3
(A + Ā + V )3

«
(−nΩ)k−1

+
k(k − 1)

2

„
(A + Ā)d(A + Ā) +

2i

3
(A + Ā)3

«
dV (−nΩ)k−2

–
+ · · ·

(KARABALI; both Sedge and Sbulk related to the KCS actions of NAIR, SCHIFF)

The bulk action is a CS action, Sbulk ∼ S2k+1
CS (Ã)

Ã = (A0 + V , ai + Āi + Ai) = background + fluctuations
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EDGE & BULK EFFECTIVE ACTIONS (cont’d.)

Gauge Invariance⇒ Anomaly Cancellation

δSedge 6= 0, δSbulk 6= 0

δSedge + δSbulk = 0

The edge action for S4 case obtained by using the fact that CP3 is locally S4 × CP1.

The excitations do not have Lorentz invariance

The bulk fields are gauging the isometries of the space; hence they

should be interpreted in terms of gravity on the fuzzy space.
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A GENERAL RESULT ON LARGE N

A deformation of background is of the form

Ω =⇒ Ω + F

Classically, we can ask: Dynamics given by (H,Ω + F ) equivalent to (H̃,Ω)?

In quantum theory, the Hilbert space for Ω + F is the same if the characteristic class of Ω

is unchanged; for example, in two dimensions ifZ
Ω + F =

Z
Ω

However, the wave functions can be modified. This leads to new symbols

X (~x, t) =
1

N

X
m,l

Ψm(~x,A)Xml(t)Ψ∗l (~x,A)

Introduction of background fields leads to new wave functions, new symbols, new large

N limit or, turning this around, large N limits can be labeled by possible background

fields.
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A GENERAL RESULT ON LARGE N (cont’d.)

The change due to change in A can be obtained in two ways:

• Work out changes in Ψm(~x,A) and the corresponding changes in the symbol

OR

• We can write a general matrix function as sums of monomials of the form

K = K µ1µ2...µn Dµ1 Dµ2 · · ·Dµn

and work out changes as we shift D → D + δA

(K = D0 wil be needed for the effective action.)

For a shift of Dµ we can write

δDµ = 1
2

»
ξα[Dα,Dµ] + [Dα,Dµ]ξ̃α

–
ξα = δDλ(Ω−1)λα, ξ̃α = (Ω−1)λαδDλ, Ωµν = [Dµ,Dν ]
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A GENERAL RESULT ON LARGE N (cont’d.)

For the change of K under a shift of Dµ, we get

δK = 1
2

ˆ
δ1K + δ2K

˜
δ1K = ξα[Dα,K ] +

n−1X
k=1

Dµ1 ...Dµk−1 [Dµk , ξ
α][Dα,K µ1...µk ]

δ2K = [K ,Dα]ξ̃α +
2X
n

[K̃ µk ...µn ,Dα][ξ̃α,Dµk ]Dµk+1...Dµn

The K µ1...µk are determined iteratively by recursion rules

K µ = (Ω−1)µλ[Dλ,K ]− (Ω−1)µλDν [Dλ,K ν ]

K µν = (Ω−1)νλ[Dλ,K µ]− (Ω−1)νλDα[Dλ,K µα]

... ... ... ...

And similarly for K̃ µk ...µn .
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A GENERAL RESULT ON LARGE N (cont’d.)

The bulk action is given by

S = iTr
“
ρ̂0Û†D0Û

”
= iTr

“
ρ̂0Û†∂0Û

”
− Tr

“
ρ̂0Û†Â0Û

”
where we can take ρ̂0 = 1.

For example, for CP1, the variation is given by

δS = iTr(ρ̂0δD0) ≈ iTr[δDµ(Ω−1)µνFν0]

Integration of this will give the action.

We take the large n limit, taking a background U(1) field (corresponding to the

symplectic form) and fluctuations which may be nonabelian. i.e.,

Ω−1 ≈ ω−1 − ω−1Fω−1 + · · ·

F is the fluctuation from the background value ω.
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A GENERAL RESULT ON LARGE N (cont’d.)

There is also a change in the symbol of a product,

(AB)0 = (AB)− 1
2 Tr [ω−1)µνFµν(AB + BA)]

The effective action becomes, say, for CP2,

δS =

Z
detω

"
1
2 Tr [δAµFν0 + Fν0δAµ)](ω−1)µν

− 1
4 Tr [δAα(Fβ0Fµν + FµνFβ0)](ω−1)αβ(ω−1)µν

− 1
2 Tr [δAα(Fβ0Fµν + FµνFβ0)][(ω−1)αµ(ω−1)νβ

#

Integration of this leads to the action

S =

Z »
ω ∧ ω ∧ A + ω ∧ (C .S.)(3) +

1

3
(C .S.)(5)

–
= SCS(A), A = a + A, da = ω
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A GENERAL RESULT ON LARGE N (cont’d.)

The general result is

i
Z

dt Tr(D0) ≈ S(2k+1)
∗CS (a + A) + · · · , as N →∞

≈ S(2k+1)
CS (a + A)

(For the Abelian case, this is related to Moser’s lemma.)

The latter form is background independent, just like the matrix action iTr
“
ρ̂0Û†D0Û

”
.

The expansion of the matrix action in terms of different backgrounds is obtained, in the

large n limit, by expanding the CS action around the corresponding gauge potentials.

This is a general matrix result, the CS one-form can generate all the higher CS forms as

appropriate large N limits

Before we turn to gravity, we comment on how this is related to the Bergman metric
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A COMMENT ON THE BERGMAN METRIC

The density ρ can be written in terms of the wave functions as

ρ =
1

N

X
m

Ψm(~x,A)Ψ∗m(~x,A)

The Bergman metric for Kähler manifolds is given by

g =
1

n
∂ ∂̄ log ρ

The expansion of this in powers of curvatures is important for approximating Einstein

metrics for Kähler manifolds, for example, for Calabi-Yau manifolds in CPk .

TIAN, YAU &ZELDITCH and LU & CATLIN derived the expansion

ρ ≈ ωk + ωk−1 R

2
+ ωk−1

„
1

3
∆R +

1

24
|Riem|2 −

1

6
|Ric|2 +

1

8
R2
«

+ · · ·
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A COMMENT ON THE BERGMAN METRIC (cont’d.)

More recently, DAI, LIU & MA ands MA & MARINESCU obtained

ρ ≈ ωk + ωk−1
„

R

2
1E + iRE

«
+ · · ·

These results (and some higher terms) are reproduced by our results by taking

ρ =
δS

δA0

and expanding around ω.

Can we systematize this?
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GRAVITY ON A FUZZY SPACE

The gauge fields in

i
Z

dt Tr(D0) ≈ S(2k+1)
CS (a + A) + · · · , as N →∞

lead to gauging of the isometry group SU(k + 1) of CPk , so a natural interpretation is in

terms of gravity

We will take an approach of starting with the Hilbert space of (Matter

+Gravity), an already quantized theory, and extracting the notion of

continuous spacetime in the large N limit.

Hilbert spaceH = Hs ⊗Hm, general state

| A, r 〉

Correspond to “space” Correspond to “matter”
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GRAVITY ON A FUZZY SPACE (cont’d.)

For D0, make an ansatz

〈A, r|D0|B, s〉 = δrs 〈A|D(s)
0 |B〉 + 〈A, r|D(m)

0 |B, s〉

〈A, r|ρ0|B, s〉 = δAB 〈r|ρ0|s〉

A0 (or H ) specifies the choice of matter system. For spacetime, the geometry is not a

priori determined

D(s) should be regarded as an arbitrary matrix

Entropy of de Sitter space, eS ∼ exp(1/Λ)⇒ There are states in the Hilbert space

representing pure space

Dynamics of space should be treated exactly as dynamics of matter

Action, as for any quantum theory, is given by

S = i
Z

dt Tr(ρU†D0U)
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GRAVITY ON A FUZZY SPACE (cont’d.)

Optimize the choice of large N limit =⇒ Extremization of the action (with respect to

D(s)
0 ) to determine the “best” background.

If we ignore all matter degrees of freedom as a first approximation, the action becomes

S ≈ i
Z

dt Tr(D(s)
0 )

For large number of states, the action is effectively SCS . Thus,

Fuzzy spaces (Matrix models, QH model) =⇒ Chern-Simons gravity

Indications of CS gravity action in M -theory

As an example, take a large N limit which leads to the 7-dim. CS action, starting with

CP3 × R

Gauge group∼ U(4) ∼ SO(6)×U(1)
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GRAVITY ON A FUZZY SPACE (cont’d.)

ChooseM7 =M5 × S2, with FU(1) = l ω, where ω is the Kähler form on S2.

The effective large N action is

S = −i
l

24π2

Z
Tr
„

A dA dA +
3

2
A3 dA +

3

5
A5
«

A = Pa ea
µ dxµ + 1

2 J ab ωab
µ dxµ

O(6)/O(5) O(5)

Euclidean de Sitter space is a solution

A further choice e5
5 = 1, ω5a = 0, ωab

5 = 0, for a, b = 1, ..., 4, leads to the Einstein action

in 4 dimensions,

S =
lΛ

16π

Z √
g d4x (R − 3Λ)
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GRAVITY ON A FUZZY SPACE (cont’d.)

This is similar to the McDowell-Mansouri formulation of Einstein gravity.

Key points to be clarified:

• How does Minkowski signature arise?

• How is (quantized) matter coupled to gravity?

There are partial answers to both, but details are yet to be worked out.

It is not clear if we will have holography.

There is no issue of quantizing a classical theory of gravity, we start with the Hilbert

space.

Spacetime is nothing more than a convenient framework for formulating matter

interactions.
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