REFLECTIONS ON FUZZY SPACES, LANDAU LEVELS & GRAVITY

V. P. NAIR

CITY COLLEGE OF THE CUNY

Supersymmetry in Integrable Systems 2010
Yerevan State University
AUGUST 24-28, 2010

Fuzzy spaces provide approximations to a differential manifold in terms of finite-dimensional matrices. What can they tell us about gravity?

- Fuzzy spaces-quantum Hall effect connection
- ullet Extending the quantum Hall effect to higher dimensions, primarily to \mathbb{CP}^k
 - Lowest Landau level as a fuzzy space, copy of \mathbb{CP}^k
 - Dynamics for the lowest Landau level
 - ▶ Bulk dynamics ⇒ Kähler-Chern-Simons action
 - ► Edge dynamics ⇒ Generalized WZW action
- General result for the large *N* limits of the Chern-Simons one-form

$$\int dt \operatorname{Tr} D_0 \implies S_{CS}(A_0, A_i)$$
Matrix model Continuous field theory

 A_0 , A_i parametrize the different large N limits

INTRODUCTION/PLAN (cont'd.)

- Comment on relation to Bergman metric
- Gauge fields correspond to gauging of isometries ⇒ gravity
- ullet Evolution of states for space \sim evolution of states for matter
- Fuzzy spaces lead to Chern-Simons gravity (almost unique)
- Gravity arises as an optimization: How do we choose the "best" large *N* limit to simplify the dynamics of other (matter) systems?
- Comment on how Minkowski signature can arise

QHE-FUZZY SPACE CONNECTION

- Fuzzy spaces can be defined by the triple $(\mathcal{H}_N, Mat_N, \Delta_N)$
 - $\mathcal{H}_N = N$ -dimensional Hilbert space
 - $Mat_N =$ matrix algebra of $N \times N$ matrices which act as linear transformations on \mathcal{H}_N
 - $\Delta_N =$ matrix analog of the Laplacian.
- In the large N approximation
 - $\mathcal{H}_N \longrightarrow \text{Phase space } \mathcal{M}$
 - $Mat_N \longrightarrow Algebra$ of functions on \mathcal{M}
 - $\Delta_N \longrightarrow$ needed to define metrical and geometrical properties.
- $\mathcal{M}_F \equiv (\mathcal{H}_N, \mathit{Mat}_N, \Delta_N)$ defines a noncommutative and finite mode approximation to \mathcal{M} .
- Quantum Hall Effect on a compact space \mathcal{M} , lowest Landau level $\sim \mathcal{H}_N$
- ullet Observables restricted to the lowest Landau level $\in \mathit{Mat}_N$
- Can we utilize this to study fuzzy spaces by analyzing QHE?

A SIMPLE FUZZY SPACE S_F^2

- Consider the $(n+1) \times (n+1)$ angular momentum matrices J^a , n=2j
- Define

$$X^a = \frac{J^a}{\sqrt{j(j+1)}}$$

These obey

$$X^a X^a = 1$$

- Functions of these matrices are functions of 1, X^a , $X^{(a}X^{b)} \frac{1}{3}\delta^{ab}$, \cdots ; there are $(n+1)^2$ independent functions for a basis.
- This agrees with

$$f(S^2) = \sum_{0}^{n} f_{lm} Y_m^l(\theta, \varphi), \qquad \sum_{0}^{n} (2l+1) = (n+1)^2$$

• Further, when $n \to \infty$,

$$[X^a, X^b] = i\epsilon^{abc} \frac{X^c}{\sqrt{j(j+1)}} \implies 0$$

$\overline{ ext{Landau problem on }\mathbb{CP}^k}$

- Hu and Zhang introduced QHE on S^4 where the background magnetic field = SU(2) "instanton"
- We will start by generalizing to arbitrary even dimensions
- lacktriangle QHE on \mathbb{CP}^k (U(1) and SU(k) background fields) (Karabali, Nair)
- lacktriangle \mathbb{CP}^k is given as

$$\mathbb{CP}^k = \frac{SU(k+1)}{U(k)} \sim \frac{SU(k+1)}{U(1) \times SU(k)}$$

- This allows the introduction of constant background fields which are valued in $\underline{U(k)} \sim \underline{U(1)} \oplus SU(\underline{k})$
- Useful comparison:

Minkowski = Poincaré/Lorentz

Landau problem on \mathbb{CP}^1

- Since $\mathbb{CP}^1 \sim S^2 = SU(2)/U(1)$, start with choosing $g = \exp(i\sigma \cdot \theta/2) \in SU(2)$ as coordinates for the space (and a gauge direction).
- Wave functions are given by the Wigner \mathcal{D} -functions

$$\mathcal{D}_{ms}^{(j)}(g) = \langle j, m | \exp(iJ \cdot \theta) | j, s \rangle$$

subject to a condition on s.

- Define right translations as R_a $g = g t_a$.
- The covariant derivatives $D_{\pm} = iR_{\pm}/r$. Since

$$[R_+, R_-] = 2R_3 \implies [D_+, D_-] = -\frac{2R_3}{r^2}$$

we must choose R_3 to be -n for the Landau problem.

• This corresponds to a field $a = in \operatorname{Tr}(t_3 g^{-1} dg)$.

LANDAU PROBLEM ON \mathbb{CP}^1 (cont'd.)

The wave functions are thus

$$\Psi_m(g) \sim \mathcal{D}_{m,-n}^{(j)}(g)$$

Choose the Hamiltonian as

$$\mathcal{H} = \frac{1}{4mr^2} \left[R_+ R_- + R_- R_+ \right]$$

The left action

$$L_a g = t_a g$$

commutes with $\ensuremath{\mathcal{H}}$ and corresponds to "magnetic translations".

• The lowest Landau level (LLL) has the further condition (holomorphicity condition)

$$R_-\Psi_m(g)=0$$

• LLL states also correspond to co-adjoint orbit quantization of $a = in \operatorname{Tr}(t_3 g^{-1} dg)$.

QHE on \mathbb{CP}^k

• On \mathbb{CP}^k one can have "constant" background magnetic fields in U(1) or U(k) (field strengths \sim Riemannian curvature $\sim U(k)$ structure constants)

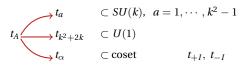
$$\mathbb{CP}^k = SU(k+1)/U(k) \sim SU(k+1)/\{U(1) \times SU(k)\}$$

- Parametrize using the $(k+1) \times (k+1)$ matrix, $g \in SU(k+1)$, with $g \sim gh$, $h \in U(k)$
- The constant fields correspond to

$$a = in\sqrt{\frac{2k}{k+1}}\operatorname{Tr}(t_{k^2+2k}g^{-1}dg),$$
 U(1) field

$$\bar{A}^a = 2i \operatorname{tr}(t^a g^{-1} dg),$$

SU(k) field



QHE ON \mathbb{CP}^k (cont'd.)

• Wave functions form SU(k+1) representations; expressed in terms of Wigner \mathcal{D} -functions

$$\Psi \sim \mathcal{D}_{L,R}^{(I)}(g) = \langle L \mid \hat{g} \mid R \rangle$$

quantum numbers characterizing states in J-representation

● Abelian case (*U*(1) background field)

Under
$$U(1)_R$$
: $a \rightarrow a - \frac{nk}{\sqrt{2k(k+1)}}d\theta$

Under $SU(k)_R$: $a \rightarrow a$

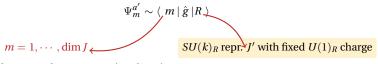
$$\Psi_m \sim \langle m \mid \hat{g} \mid R_a = 0, R_{k^2 + 2k} = -\frac{nk}{\sqrt{2k(k+1)}} \rangle$$

 $m=1,\cdots,\dim I$

 $SU(k)_R$ singlet with fixed $U(1)_R$ charge

QHE ON \mathbb{CP}^k (cont'd.)

• Nonabelian case (U(k)) background field) \bar{A}^a transforms under $SU(k)_R \to \text{wave functions carry } SU(k)_R$ charge



a' internal gauge index =1, · · · , $N' = \dim J'$

The Hamiltonian can be taken as

$$\begin{split} H &= \frac{1}{2MR^2} \sum_{I=1}^k R_{+I} R_{-I} + \text{constant} \\ &= \frac{1}{2MR^2} \left[C_2^{SU(k+1)}(J) - C_2^{SU(k)}(J') - \frac{n^2 k}{2(k+1)} \right] \end{split}$$

• For the lowest Landau level, $R_{-I}\Psi = 0$ (holomorphicity condition).

LLL HILBERT SPACE

In the Abelian case

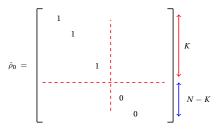
$$\Psi \in \operatorname{symmetric rank} n \operatorname{representation} J$$

$$N = \dim J = \frac{(n+k)!}{n!k!} \to \frac{n^k}{k!}$$

- ullet These are coherent states for \mathbb{CP}^k
- Think of \mathbb{CP}^k as a phase space, quantization leads to the finite dimensional Hilbert space of LLL states.
- LLL of \mathbb{CP}^k with $U(1) \equiv$ "fuzzy" \mathbb{CP}^k
- ullet In the large N limit, matrices which are operators on LLL states become functions on \mathbb{CP}^k
- ullet This gives an approach to building smooth spaces as large N limits of finite-dimensional Hilbert spaces
- A similar story for the nonabelian case.

MATRIX FORMULATION OF LLL DYNAMICS

- The LLL has N available states, K occupied by fermions, $1 \ll K \ll N$
- Form a QH droplet, specified by the density matrix: $\hat{\rho}_0 = \sum_{i=1}^K |i\rangle\langle i|$,



- Under time evolution: $\hat{\rho}_0 \to \hat{\rho} = \hat{U}\hat{\rho}_0\hat{U}^{\dagger}$ $\hat{U} = N \times N$ unitary matrix: "collective" variable describing all LLL excitations
- The dynamics is given by

$$S = \int dt \operatorname{Tr} \left[i \hat{\rho}_0 \hat{U}^{\dagger} \partial_t \hat{U} - \hat{\rho}_0 \hat{U}^{\dagger} \hat{V} \hat{U} \right]$$

MATRIX FORMULATION OF LLL DYNAMICS (cont'd.)

This leads to the evolution equation for density matrix

$$i\frac{d\hat{
ho}}{dt} = [\hat{V}, \hat{
ho}]$$

(No explicit dependence on properties of space on which QHE is defined, abelian or nonabelian nature of fermions etc)

The symbol for a matrix is

$$\begin{split} X(\vec{x},t) &= \frac{1}{N} \sum_{m,l} \Psi_m(\vec{x}) X_{ml}(t) \Psi_l^*(\vec{x}) \\ X^{a'b'}(\vec{x},t) &= \frac{1}{N} \sum_{m,l} \Psi_m^{a'}(\vec{x}) X_{ml}(t) \Psi_l^{*b'}(\vec{x}), \qquad a',b'=1,\cdots N' = \text{dim} J' \end{split}$$

We seek a simplification at large N in terms of the symbol for U.

MATRIX FORMULATION OF LLL DYNAMICS (cont'd.)

This utilizes the usual rules,

$$\begin{array}{ccc} & \hat{\rho}_0, \hat{U}, \hat{V} & \Longrightarrow & \underbrace{\rho_0(\vec{x}), U(\vec{x},t), V(\vec{x})}_{\text{Symbols}} \\ \text{Matrix multiplication} & \Longrightarrow & * \text{product} \\ \text{Trace operation Tr} & \Longrightarrow & N \int d\mu \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & &$$

For example, the star product can be written as

$$\begin{array}{lcl} A(g)*B(g) & = & \sum_{s} (-1)^{s} \left[\frac{(n-s)!}{n! \, s!} \right] \sum_{i_{1}+i_{2}+\cdots+i_{k}=s}^{n} \frac{s!}{i_{1}! \, i_{2}! \cdots i_{k}!} \, \hat{R}_{-1}^{i_{1}} \hat{R}_{-2}^{i_{2}} \cdots \hat{R}_{-k}^{i_{k}} A(g) \\ & & \times \hat{R}_{+1}^{i_{1}} \hat{R}_{+2}^{i_{2}} \cdots \hat{R}_{+k}^{i_{k}} B(g) \end{array}$$

• Bosonic action can be written in terms of $G \in U(N')$

$$\begin{split} S &= \frac{1}{4\pi} \int_{\partial D} \text{Tr} \left[\left(G^\dagger \dot{G} + \omega \ G^\dagger \mathcal{L} G \right) G^\dagger \mathcal{L} G \right] \\ &+ \frac{1}{4\pi} \int_D \text{Tr} \Big[-d \left(i \bar{A} dG G^\dagger + i \bar{A} G^\dagger dG \right) + \underbrace{\frac{1}{3} \left(G^\dagger dG \right)^3 \right] \left(\frac{\Omega}{2\pi} \right)^{k-1}}_{\text{WZW-term in } 2k + 1 \text{ dim}} \end{split}$$

 $\mathcal{L} = \frac{1}{n} (\Omega^{-1})^{ij} \hat{r}_j \mathcal{D}_i \phi$ = covariant derivative along the boundary droplet

In the presence of gauge interactions

$$S = N \int dt \, d\mu \, \text{tr} \left[i\rho_0 * U^{\dagger} * \partial_t U - \rho_0 * U^{\dagger} * (V + \mathcal{A}) * U \right]$$
$$= S_{\text{edge}} + S_{\text{bulk}}$$

• Invariance under U(N) rotations $\delta \hat{U} = -i\hat{\lambda} \hat{U}$ implies that S is invariant under

$$\begin{split} \delta \, U &= -i \lambda * \, U \\ \delta \mathcal{A}(\vec{x},t) &= \partial_t \lambda(\vec{x},t) - i \, (\lambda * (V+\mathcal{A}) - (V+\mathcal{A}) * \lambda) \end{split}$$

We need the above transformation to be induced by

$$\delta A = \partial \Lambda + i[\bar{A} + A, \Lambda]$$

 $\mathcal{A} = \text{function}(A_{\mu}, \bar{A}_{\mu}, V)$

 $\lambda = \text{function}(\Lambda, A_{\mu}, \bar{A}_{\mu})$

$$\begin{split} \mathcal{A} &= A_0 - \frac{i}{2n} g^{ij} \left[A_i, \ 2D_i A_0 - \partial_0 A_i + i [A_i, \ A_0] \right] + \frac{1}{4n} (\Omega^{-1})^{ij} \{ A_i, 2D_j A_0 - \partial_0 A_j + i [A_j, \ A_0] \} \\ &+ u^i A_i - \frac{i}{2n} g^{ij} \left[A_i, \ A_k \right] \partial_j u^k + \frac{1}{4n} (\Omega^{-1})^{ij} \{ A_i, \ A_k \} \partial_j u^k \\ &- \frac{i}{2n} g^{ij} \left[A_i, \ 2D_j A_k - D_k A_j + i [A_j, \ A_k] \right. \\ &+ \frac{1}{4n} (\Omega^{-1})^{ij} \{ A_i, \ 2D_j A_k - D_k A_j + i [A_j, \ A_k] + 2\bar{F}_{jk} \, \} u^k \\ &+ \frac{1}{2n^2} g^{ik} (\Omega^{-1})^{jl} \left(\mathcal{D}_i A_j + \mathcal{D}_j A_i \right) \nabla_k \partial_l V + \cdots \end{split}$$

• Relation between A and A is essentially the Seiberg-Witten transformation

where $u^i = \frac{1}{2}(\Omega^{-1})^{ij}\partial_i V$

EDGE & BULK EFFECTIVE ACTIONS (cont'd.)

- $S_{\text{edge}} \sim S_{\text{WZW}} \left(A^L = A + \overline{A} , A^R = \overline{A} \right)$ = chirally gauged WZW action generalized in $2k \left(\partial (\text{droplet}) + \text{time} \right)$ dimensions
- The bulk action is

$$\begin{split} S_{\text{bulk}} &= \frac{(-1)^{k+1}}{(2\pi)^k k!} \int \text{tr} \bigg[A \, (-n\Omega)^k \\ &\quad + \frac{k}{2} \, \left((A + \bar{A} + V) \, d(A + \bar{A} + V) + \frac{2i}{3} (A + \bar{A} + V)^3 \right) (-n\Omega)^{k-1} \\ &\quad + \frac{k(k-1)}{2} \, \left((A + \bar{A}) \, d(A + \bar{A}) + \frac{2i}{3} (A + \bar{A})^3 \right) dV \, (-n\Omega)^{k-2} \bigg] + \cdots \end{split}$$

(Karabali; both $S_{
m edge}$ and $S_{
m bulk}$ related to the KCS actions of Nair, Schiff)

• The bulk action is a CS action, $S_{\text{bulk}} \sim S_{\text{CS}}^{2k+1}(\tilde{A})$ $\tilde{A} = (A_0 + V, a_i + \bar{A}_i + A_i) = \text{background} + \text{fluctuations}$

EDGE & BULK EFFECTIVE ACTIONS (cont'd.)

● Gauge Invariance ⇒ Anomaly Cancellation

$$\delta S_{\text{edge}} \neq 0, \quad \delta S_{\text{bulk}} \neq 0$$

$$\delta S_{\text{edge}} + \delta S_{\text{bulk}} = 0$$

- ullet The edge action for S^4 case obtained by using the fact that \mathbb{CP}^3 is locally $S^4 \times \mathbb{CP}^1$.
- The excitations do not have Lorentz invariance

The bulk fields are gauging the isometries of the space; hence they should be interpreted in terms of gravity on the fuzzy space.

A GENERAL RESULT ON LARGE N

A deformation of background is of the form

$$\Omega \implies \Omega + F$$

- Classically, we can ask: Dynamics given by $(\mathcal{H}, \Omega + F)$ equivalent to $(\tilde{\mathcal{H}}, \Omega)$?
- In quantum theory, the Hilbert space for $\Omega + F$ is the same if the characteristic class of Ω is unchanged; for example, in two dimensions if

$$\int \Omega + F = \int \Omega$$

However, the wave functions can be modified. This leads to new symbols

$$X(\vec{x},t) = \frac{1}{N} \sum_{m,l} \Psi_m(\vec{x},A) X_{ml}(t) \Psi_l^*(\vec{x},A)$$

Introduction of background fields leads to new wave functions, new symbols, new large
 N limit or, turning this around, large N limits can be labeled by possible background
 fields.

A GENERAL RESULT ON LARGE N (cont'd.)

- The change due to change in *A* can be obtained in two ways:
 - Work out changes in $\Psi_m(\vec{x}, A)$ and the corresponding changes in the symbol OR
 - We can write a general matrix function as sums of monomials of the form

$$K = K^{\mu_1 \mu_2 \dots \mu_n} D_{\mu_1} D_{\mu_2} \dots D_{\mu_n}$$

and work out changes as we shift $D \rightarrow D + \delta A$

 $(K = D_0 \text{ wil be needed for the effective action.})$

• For a shift of D_{μ} we can write

$$\begin{split} \delta D_{\mu} &= \tfrac{1}{2} \bigg[\xi^{\alpha} [D_{\alpha}, D_{\mu}] + [D_{\alpha}, D_{\mu}] \tilde{\xi}^{\alpha} \bigg] \\ \xi^{\alpha} &= \delta D_{\lambda} (\Omega^{-1})^{\lambda \alpha}, \quad \tilde{\xi}^{\alpha} = (\Omega^{-1})^{\lambda \alpha} \delta D_{\lambda}, \quad \Omega_{\mu \nu} = [D_{\mu}, D_{\nu}] \end{split}$$

• For the change of *K* under a shift of D_{μ} , we get

$$\begin{split} \delta K &= \frac{1}{2} \left[\delta_1 K + \delta_2 K \right] \\ \delta_1 K &= \xi^{\alpha} [D_{\alpha}, K] + \sum_{k=1}^{n-1} D_{\mu_1} ... D_{\mu_{k-1}} [D_{\mu_k}, \xi^{\alpha}] [D_{\alpha}, K^{\mu_1 ... \mu_k}] \\ \delta_2 K &= [K, D_{\alpha}] \tilde{\xi}^{\alpha} + \sum_{n=1}^{n} [\tilde{K}^{\mu_k ... \mu_n}, D_{\alpha}] [\tilde{\xi}^{\alpha}, D_{\mu_k}] D_{\mu_{k+1} ... D_{\mu_n}} \end{split}$$

• The $K^{\mu_1 \dots \mu_k}$ are determined iteratively by recursion rules

$$K^{\mu} = (\Omega^{-1})^{\mu\lambda} [D_{\lambda}, K] - (\Omega^{-1})^{\mu\lambda} D_{\nu} [D_{\lambda}, K^{\nu}]$$

$$K^{\mu\nu} = (\Omega^{-1})^{\nu\lambda} [D_{\lambda}, K^{\mu}] - (\Omega^{-1})^{\nu\lambda} D_{\alpha} [D_{\lambda}, K^{\mu\alpha}]$$

...

And similarly for $\tilde{K}^{\mu_k...\mu_n}$.

The bulk action is given by

$$S = i \operatorname{Tr} \left(\hat{\rho}_0 \hat{U}^{\dagger} D_0 \hat{U} \right)$$
$$= i \operatorname{Tr} \left(\hat{\rho}_0 \hat{U}^{\dagger} \partial_0 \hat{U} \right) - \operatorname{Tr} \left(\hat{\rho}_0 \hat{U}^{\dagger} \hat{A}_0 \hat{U} \right)$$

where we can take $\hat{\rho}_0 = 1$.

• For example, for \mathbb{CP}^1 , the variation is given by

$$\delta S = i \text{Tr}(\hat{\rho}_0 \delta D_0) \approx i \text{Tr}[\delta D_{\mu} (\Omega^{-1})^{\mu \nu} F_{\nu 0}]$$

Integration of this will give the action.

• We take the large n limit, taking a background U(1) field (corresponding to the symplectic form) and fluctuations which may be nonabelian. i.e.,

$$\Omega^{-1} \approx \omega^{-1} - \omega^{-1} F \omega^{-1} + \cdots$$

F is the fluctuation from the background value ω .

There is also a change in the symbol of a product,

$$(AB)_0 = (AB) - \frac{1}{2} \text{Tr} \left[\omega^{-1} \right]^{\mu\nu} F_{\mu\nu} (AB + BA)$$

• The effective action becomes, say, for \mathbb{CP}^2 ,

$$\begin{split} \delta S &= \int \det \omega \left[\frac{1}{2} \operatorname{Tr} \left[\delta A_{\mu} F_{\nu 0} + F_{\nu 0} \delta A_{\mu} \right] \right] (\omega^{-1})^{\mu \nu} \\ &- \frac{1}{4} \operatorname{Tr} \left[\delta A_{\alpha} (F_{\beta 0} F_{\mu \nu} + F_{\mu \nu} F_{\beta 0}) \right] (\omega^{-1})^{\alpha \beta} (\omega^{-1})^{\mu \nu} \\ &- \frac{1}{2} \operatorname{Tr} \left[\delta A_{\alpha} (F_{\beta 0} F_{\mu \nu} + F_{\mu \nu} F_{\beta 0}) \right] \left[(\omega^{-1})^{\alpha \mu} (\omega^{-1})^{\nu \beta} \right] \end{split}$$

• Integration of this leads to the action

$$\begin{split} S &= \int \left[\omega \wedge \omega \wedge A + \omega \wedge (C.S.)^{(3)} + \frac{1}{3} (C.S.)^{(5)} \right] \\ &= \mathcal{S}_{CS}(A), \qquad \qquad \mathcal{A} = a + A, \qquad da = \omega \end{split}$$

The general result is

$$i\int dt \, {
m Tr}(D_0) \quad pprox \quad S_{*CS}^{(2k+1)}(a+A)+\cdots, \quad {
m as} \ N o \infty$$
 $\qquad \qquad pprox \qquad S_{CS}^{(2k+1)}(a+A)$

(For the Abelian case, this is related to Moser's lemma.)

- The latter form is background independent, just like the matrix action $i \text{Tr} \left(\hat{\rho}_0 \hat{U}^{\dagger} D_0 \hat{U} \right)$. The expansion of the matrix action in terms of different backgrounds is obtained, in the large n limit, by expanding the CS action around the corresponding gauge potentials.
- ullet This is a general matrix result, the CS one-form can generate all the higher CS forms as appropriate large N limits
- Before we turn to gravity, we comment on how this is related to the Bergman metric

A COMMENT ON THE BERGMAN METRIC

• The density ρ can be written in terms of the wave functions as

$$\rho = \frac{1}{N} \sum_{m} \Psi_{m}(\vec{x}, A) \Psi_{m}^{*}(\vec{x}, A)$$

• The Bergman metric for Kähler manifolds is given by

$$g = \frac{1}{n} \partial \,\bar{\partial} \,\log \rho$$

The expansion of this in powers of curvatures is important for approximating Einstein metrics for Kähler manifolds, for example, for Calabi-Yau manifolds in \mathbb{CP}^k .

● TIAN, YAU &ZELDITCH and LU & CATLIN derived the expansion

$$\rho \approx \omega^k + \omega^{k-1}\frac{R}{2} + \ \omega^{k-1}\left(\frac{1}{3}\Delta R + \frac{1}{24}|\mathit{Riem}|^2 - \frac{1}{6}|\mathit{Ric}|^2 + \frac{1}{8}R^2\right) + \cdots$$

A COMMENT ON THE BERGMAN METRIC (cont'd.)

More recently, Dai, Liu & Ma ands Ma & Marinescu obtained

$$\rho \approx \omega^k + \omega^{k-1} \left(\frac{R}{2} \mathbf{1}_E + i R_E \right) + \cdots$$

These results (and some higher terms) are reproduced by our results by taking

$$\rho = \frac{\delta S}{\delta A_0}$$

and expanding around ω .

Can we systematize this?

The gauge fields in

$$i \int dt \operatorname{Tr}(D_0) \approx S_{\text{CS}}^{(2k+1)}(a+A) + \cdots, \text{ as } N \to \infty$$

lead to gauging of the isometry group SU(k+1) of \mathbb{CP}^k , so a natural interpretation is in terms of gravity

We will take an approach of starting with the Hilbert space of (Matter +Gravity), an already quantized theory, and extracting the notion of continuous spacetime in the large N limit.

• Hilbert space $\mathcal{H} = \mathcal{H}_s \otimes \mathcal{H}_m$, general state

• For D_0 , make an ansatz

$$\langle A, r|D_0|B, s\rangle = \delta_{rs} \langle A|D_0^{(s)}|B\rangle + \langle A, r|D_0^{(m)}|B, s\rangle$$

$$\langle A, r|\rho_0|B, s\rangle = \delta_{AB} \langle r|\rho_0|s\rangle$$

- A₀ (or H) specifies the choice of matter system. For spacetime, the geometry is not a
 priori determined
- $D^{(s)}$ should be regarded as an arbitrary matrix
- Entropy of de Sitter space, $e^S \sim \exp(1/\Lambda) \Rightarrow$ There are states in the Hilbert space representing pure space
- Dynamics of space should be treated exactly as dynamics of matter
- Action, as for any quantum theory, is given by

$$S = i \int dt \operatorname{Tr}(\rho \ U^{\dagger} D_0 U)$$

GRAVITY ON A FUZZY SPACE (cont'd.)

- Optimize the choice of large N limit \Longrightarrow Extremization of the action (with respect to $D_0^{(s)}$) to determine the "best" background.
- If we ignore all matter degrees of freedom as a first approximation, the action becomes

$$S \approx i \int dt \operatorname{Tr}(D_0^{(s)})$$

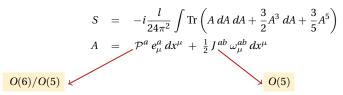
• For large number of states, the action is effectively S_{CS} . Thus,

Fuzzy spaces (Matrix models, QH model) \Longrightarrow Chern-Simons gravity

- Indications of CS gravity action in M-theory
- As an example, take a large N limit which leads to the 7-dim. CS action, starting with $\mathbb{CP}^3 \times \mathbb{R}$
- Gauge group $\sim U(4) \sim SO(6) \times U(1)$

GRAVITY ON A FUZZY SPACE (cont'd.)

- Choose $\mathcal{M}^7 = \mathcal{M}^5 \times S^2$, with $F_{U(1)} = l \omega$, where ω is the Kähler form on S^2 .
- The effective large *N* action is



- Euclidean de Sitter space is a solution
- A further choice $e_5^5=1$, $\omega^{5a}=0$, $\omega_5^{ab}=0$, for a,b=1,...,4, leads to the Einstein action in 4 dimensions,

$$S = \frac{l\Lambda}{16\pi} \int \sqrt{g} \ d^4x \left(R - 3\Lambda \right)$$

- This is similar to the McDowell-Mansouri formulation of Einstein gravity.
- Key points to be clarified:
 - How does Minkowski signature arise?
 - How is (quantized) matter coupled to gravity?

There are partial answers to both, but details are yet to be worked out.

- It is not clear if we will have holography.
- There is no issue of quantizing a classical theory of gravity, we start with the Hilbert space.
- Spacetime is nothing more than a convenient framework for formulating matter interactions.