N=4 Multi-Particle Mechanics, WDVV Equations and Deformed Root Systems

Anton Galajinsky Sergey Krivonos Olaf Lechtenfeld Kirill Polovnikov

Laboratory of Mathematical Physics, Tomsk Polytechnic University Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna Institut für Theoretische Physik, Leibniz Universität Hannover

- Conformal quantum mechanics: Calogero system
- N=4 superconformal extension: su(1, 1|2) algebra
- The structure equations for (F, U): WDVV, flatness, homogeneity
- <u>first U=0</u>: covector ansatz for prepotential F
- Partial isometry formulation (⇔ WDVV, Veselov system)
- Deformed root systems and polytopes
- Hypergraphs and matroids
- Superspace approach: inertial coordinates in \mathbb{R}^{n+1}
- now $U \neq 0$: three- and four-particle solutions
- Summary

hep-th/0607215 0708.1075 0802.4386 0804.3245 0811.0021 0812.5062 0907.2244

Conformal quantum mechanics: Calogero system

n+1 identical particles with unit mass, moving on the real lineHamiltonian: $H = \frac{1}{2}p_ip_i + V_B(x^1, \dots, x^{n+1})$ so(1,2):[D,H] = -iH, [H,K] = 2iD, [D,K] = iKquantization: $[x^i, p_j] = i\delta_j^i$ realization: $D = -\frac{1}{4}(x^ip_i + p_ix^i)$ and $K = \frac{1}{2}x^ix^i$

conformal invariance \longrightarrow $(x^i \partial_i + 2) V_B = 0$

demand also permutation and translation invariance and two-body forces only

$$\longrightarrow V_B = \sum_{i < j} \frac{g^2}{(x^i - x^j)^2}$$
 Ca

Calogero model

 $\mathcal{N}=4$ superconformal extension: su(1,1|2) algebra

extend so(1,2) to su(1,1|2): $(H,D,K) \rightarrow (H,D,K,Q_{\alpha},S_{\alpha},J_{a},C)$ with $\alpha = 1,2, a = 1,2,3$ and $(Q_{\alpha})^{\dagger} = \bar{Q}^{\alpha}, (S_{\alpha})^{\dagger} = \bar{S}^{\alpha}$ and central charge C

nonvanishing (anti)commutators:

$$[D, H] = -iH$$

$$[D, K] = +iK$$

$$\{Q_{\alpha}, \bar{Q}^{\beta}\} = 2H\delta_{\alpha}^{\beta}$$

$$\{S_{\alpha}, \bar{S}^{\beta}\} = 2K\delta_{\alpha}^{\beta}$$

$$[D, Q_{\alpha}] = -\frac{i}{2}Q_{\alpha}$$

$$[K, Q_{\alpha}] = +iS_{\alpha}$$

$$[J_{a}, Q_{\alpha}] = -\frac{1}{2}(\sigma_{a})_{\alpha}^{\beta}Q_{\beta}$$

$$[D, \bar{Q}^{\alpha}] = -\frac{i}{2}\bar{Q}^{\alpha}$$

$$[K, \bar{Q}^{\alpha}] = +i\bar{S}^{\alpha}$$

$$[J_{a}, \bar{Q}^{\alpha}] = \frac{1}{2}\bar{Q}^{\beta}(\sigma_{a})_{\beta}^{\alpha}$$

$$[H, K] = 2iD$$

$$[J_a, J_b] = i\epsilon_{abc}J_c$$

$$\{Q_\alpha, \bar{S}^\beta\} = +2i(\sigma_a)_\alpha{}^\beta J_a - 2D\delta_\alpha{}^\beta - iC\delta_\alpha{}^\beta$$

$$\{\bar{Q}^\alpha, S_\beta\} = -2i(\sigma_a)_\beta{}^\alpha J_a - 2D\delta_\beta{}^\alpha + iC\delta_\beta{}^\alpha$$

$$[D, S_\alpha] = +\frac{i}{2}S_\alpha$$

$$[H, S_\alpha] = -iQ_\alpha$$

$$[J_a, S_\alpha] = -\frac{1}{2}(\sigma_a)_\alpha{}^\beta S_\beta$$

$$[D, \bar{S}^\alpha] = +\frac{i}{2}\bar{S}^\alpha$$

$$[H, \bar{S}^\alpha] = -i\bar{Q}^\alpha$$

$$[J_a, \bar{S}^\alpha] = \frac{1}{2}\bar{S}^\beta(\sigma_a)_\beta{}^\alpha$$

fermionic variables: $\psi_{\alpha}^{i}, \ \bar{\psi}^{i\alpha} = \psi_{\alpha}^{i\dagger}$ with i = 1, ..., n+1 and $\alpha = 1, 2$ $\{\psi_{\alpha}^{i}, \psi_{\beta}^{j}\} = 0, \quad \{\bar{\psi}^{i\alpha}, \bar{\psi}^{j\beta}\} = 0, \quad \{\psi_{\alpha}^{i}, \bar{\psi}^{j\beta}\} = \delta_{\alpha}{}^{\beta}\delta^{ij}$ $Q_{0\alpha} = p_{i}\psi_{\alpha}^{i}, \quad \bar{Q}_{0}^{\alpha} = p_{i}\bar{\psi}^{i\alpha} \quad \text{and} \quad S_{0\alpha} = x^{i}\psi_{\alpha}^{i}, \quad \bar{S}_{0}^{\alpha} = x^{i}\bar{\psi}^{i\alpha}$ $H_{0} = \frac{1}{2}p_{i}p_{i}, \quad D_{0} = -\frac{1}{4}(x^{i}p_{i} + p_{i}x^{i}), \quad K_{0} = \frac{1}{2}x^{i}x^{i}, \quad J_{0a} = \frac{1}{2}\bar{\psi}^{i\alpha}(\sigma_{a})_{\alpha}{}^{\beta}\psi_{\beta}^{i}$ free generators fail to obey su(1, 1|2) algebra \longrightarrow interactions are needed!

 $Q_{\alpha} = Q_{0\alpha} - i[S_{0\alpha}, V]$ and $H = H_0 + V$

minimal ansatz to close the algebra [Wyl99,BGL04]: Weyl ordering $\langle \ldots \rangle$

 $V = V_B(x) - U_{ij}(x) \langle \psi^i_{\alpha} \bar{\psi}^{j\alpha} \rangle + \frac{1}{4} F_{ijkl}(x) \langle \psi^i_{\alpha} \psi^{j\alpha} \bar{\psi}^{k\beta} \bar{\psi}^l_{\beta} \rangle$

 U_{ij} and F_{ijkl} are totally symmetric & homogeneous of degree -2 in $\{x^1, \ldots, x^n\}$

$$\longrightarrow \quad Q_{\alpha} = \left(p_{j} - i x^{i} U_{ij}(x) \right) \psi_{\alpha}^{j} - \frac{i}{2} x^{i} F_{ijkl}(x) \left\langle \psi_{\beta}^{j} \psi^{k\beta} \overline{\psi}_{\alpha}^{l} \right\rangle$$

The structure equations for (F, U): WDVV, flatness, homogeneity

insert minimal V ansatz into su(1, 1|2) algebra and demand closure \longrightarrow

$$U_{ij} = \partial_i \partial_j U$$
 and $F_{ijkl} = \partial_i \partial_j \partial_k \partial_l F$

two scalar prepotentials U and F, subject to "structure equations" [Wyl99,BGL04]

$$\begin{bmatrix} (\partial_i \partial_k \partial_p F)(\partial_p \partial_l \partial_j F) &= (\partial_i \partial_l \partial_p F)(\partial_p \partial_k \partial_j F) \end{bmatrix} , \quad x^i \partial_i \partial_j \partial_k F &= -\delta_{jk}$$
$$\begin{bmatrix} \partial_i \partial_j U - (\partial_i \partial_j \partial_k F) \partial_k U &= 0 \end{bmatrix} , \quad x^i \partial_i U &= -C$$

linear in U (flatness), quadratic in F (WDVV), with homogeneity properties redundancy: $U \simeq U + \text{constant}$, $F \simeq F + \text{quadratic polynomial}$ potential: $V_B = \frac{1}{2} (\partial_i U) (\partial_i U) + \frac{\hbar^2}{8} (\partial_i \partial_j \partial_k F) (\partial_i \partial_j \partial_k F)$

consequence: $x^i F_{ijkl} = -\partial_j \partial_k \partial_l F$ and $x^i U_{ij} = -\partial_j U$

first U=0: covector ansatz for prepotential F

$$x^i \partial_i \partial_j \partial_k F = -\delta_{jk} \Rightarrow (x^i \partial_i - 2)F = -\frac{1}{2}x^i x^i \Rightarrow F \sim x^2 \ln |x| + F_{\text{hom}}$$

breaks translation invariance! homogeneity conditions solved by ansatz [Wyl99]

$$F = -\frac{1}{2} \sum_{\alpha} (\alpha \cdot x)^{2} \ln |\alpha \cdot x| \quad \text{with} \quad \left[\sum_{\alpha} \alpha_{i} \alpha_{j} = \delta_{ij} \right]$$

covectors $\alpha = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n+1}) \in (\mathbb{R}^{n+1})^{*} \text{ or } \in i(\mathbb{R}^{n+1})^{*}$
in $\alpha(x) = \alpha \cdot x = \alpha_{i} x^{i} \quad \#\alpha =: p$

coupling constants g and central charge C reside in prepotential U

remaining structure equations take the form

"WDVV"
$$\sum_{\alpha,\beta} \frac{\alpha \cdot \beta}{\alpha \cdot x \beta \cdot x} (\alpha_i \beta_j - \alpha_j \beta_i) (\alpha_k \beta_l - \alpha_l \beta_k) = 0 \qquad [MarGra99, Ves99]$$

"flatness"
$$\partial_i \partial_j U + \sum_{\alpha} \alpha_i \alpha_j \frac{\alpha \cdot \partial U}{\alpha \cdot x} = 0$$

potential: $V_B = \frac{1}{2} (\partial U) \cdot (\partial U) + \frac{\hbar^2}{8} \sum_{\alpha,\beta} \frac{(\alpha \cdot \beta)^3}{\alpha \cdot x \beta \cdot x}$
special solutions (C=0): $U \equiv 0 \Rightarrow V_B = O(\hbar^2)$

strategy: first solve WDVV, then turn on flat U in this F background WDVV homogeneous \Rightarrow covectors projective, norm via $\sum_{\alpha} \alpha \otimes \alpha = 1$ it suffices to consider indecomposable covector sets $\{\alpha\}$ decouple center of mass $\alpha_{com} = (1, 1, ..., 1)$, reducing $(\mathbb{R}^{n+1})^* \rightarrow (\mathbb{R}^n)^*$ partial results known for $n \leq 3$ [Wyl99,ChaVes01,BGL04,GLP07,FeiVes07,GLP08]

Partial isometry formulation

 $\sum_{\alpha} \alpha \otimes \alpha \propto 1 \quad \Rightarrow \quad \text{WDVV} \cdot x = 0 \quad \Rightarrow \quad \frac{1}{12} n(n-1)^2 (n-2) \text{ indep't equations}$ $\sum_{\substack{\alpha,\beta\\\alpha,x\,\beta \to x}} \frac{\alpha \cdot \beta}{(\alpha \wedge \beta)^{\otimes 2}} = 0 \implies \sum_{\substack{\alpha,\beta\\(\alpha \neq \beta)}} \frac{\alpha \cdot \beta}{\alpha \cdot x\,\beta \cdot x} = 0 \quad \forall \ \pi$ decompose into separate equations for each plane $\pi \in \Lambda^2((\mathbb{R}^n)^*)$. Three cases: case a) π contains zero or one covector \Rightarrow trivial case b) π contains two covectors, $\pi = \alpha \land \beta \Rightarrow$ orthogonality $\alpha \cdot \beta = 0$ \Rightarrow nontrivial condition on π : case c) π contains q(>2) covectors (*) $\sum_{\alpha \in \pi} \alpha \otimes \alpha = \lambda_{\pi} \mathbb{1}_{\pi} =: \lambda_{\pi} P_{\pi}$ for $\lambda_{\pi} \in \mathbb{R}$ and $\operatorname{rank}(P_{\pi}) = 2$

yields WDVV equation on π which is trivially fulfilled for n=2

reformulate condition (*) in terms of partial isometries:

 $n \times p \text{ matrix } A = \left(\alpha_{ia}\right)_{a=1,\dots,p}^{i=1,\dots,n} \text{ defines a map } A : \mathbb{R}^p \to \mathbb{R}^n \text{ with } A A^\top = \mathbb{1}_n$

for each nontrivial plane π , select all $\alpha \in \pi$ via $B_{\pi} : \mathbb{R}^p \to \mathbb{R}^q$ by $\{\alpha\} \mapsto \{\alpha_s\}$ so that $A_{\pi} := A B_{\pi}^{\top} = (\alpha_{ia_s})_{s=1,...,q}^{i=1,...,n}$ maps $R^q \to \mathbb{R}^n$

condition (*) means $A_{\pi} A_{\pi}^{\top} = \lambda_{\pi} P_{\pi} \Leftrightarrow A_{\pi}^{\top} A_{\pi} = \lambda_{\pi} Q_{\pi}$ (**) with projectors P_{π} on \mathbb{R}^{n} and Q_{π} on \mathbb{R}^{q} of rank two and multipliers λ_{π} . Thus:

A is a solution iff $\frac{A_{\pi}}{\sqrt{\lambda_{\pi}}}$ is a rank-2 partial isometry (**) for each nontrivial plane π

 $\Rightarrow A_{\pi} A_{\pi}^{\top} A_{\pi} = \lambda_{\pi} A_{\pi} \quad \text{note:} A \neq A_{\pi} B_{\pi} \quad A_{\pi} \text{ splits over } \mathbb{R}^2$ $\Rightarrow \exists D_{\pi} : \mathbb{R}^q \to \mathbb{R}^2 \text{ and } C_{\pi} : \mathbb{R}^2 \leftarrow \mathbb{R}^n \quad \text{such that} \quad A_{\pi} = C_{\pi}^{\top} D_{\pi}$

example n=3, p=6:

$$A = \frac{1}{6} \begin{pmatrix} \alpha & \beta & \gamma & \alpha' & \beta' & \gamma' \\ 6t & -3t & -3t & 0 & 3w & -3w \\ 0 & 3\sqrt{3}t & -3\sqrt{3}t & -2\sqrt{3}w & \sqrt{3}w & \sqrt{3}w \\ 0 & 0 & 0 & 2\sqrt{3} & 2\sqrt{3} & 2\sqrt{3} \end{pmatrix} \qquad \begin{aligned} t \in [-\sqrt{\frac{2}{3}}, +\sqrt{\frac{2}{3}}] \\ w = \sqrt{2 - 3t^2} \\ AA^{\top} = 1 \end{aligned}$$

nontrivial planes: $\langle \alpha \beta \gamma \rangle$, $\langle \alpha \beta' \gamma' \rangle$, $\langle \alpha' \beta \gamma' \rangle$, $\langle \alpha' \beta' \gamma \rangle$ orthogonality: $\alpha \cdot \alpha' = \beta \cdot \beta' = \gamma \cdot \gamma' = 0$

$$A_{\langle \alpha \beta \gamma \rangle} = \frac{1}{2} \begin{pmatrix} 2t & -t & -t \\ 0 & \sqrt{3}t & -\sqrt{3}t \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow A_{\pi} A_{\pi}^{\top} = \frac{3}{2} t^2 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \frac{3}{2} t^2 \cdot P_{\pi}$$

$$A_{\langle \alpha \,\beta' \gamma' \rangle} = \frac{1}{6} \begin{pmatrix} 6t & 3w & -3w \\ 0 & \sqrt{3}w & \sqrt{3}w \\ 0 & 2\sqrt{3} & 2\sqrt{3} \end{pmatrix} \quad \Rightarrow \qquad A_{\pi} A_{\pi}^{\top} = \frac{1 - \frac{1}{2}t^2}{6 - 3t^2} \begin{pmatrix} 6 - 3t^2 & 0 & 0 \\ 0 & 2 - 3t^2 & 2w \\ 0 & 2w & 4 \end{pmatrix}$$

Deformed root systems and polytopes

take $\alpha \in \Phi^+ = \text{set of positive roots of a simple Lie algebra}$ [MarGra99,Ves99] $\Phi^+ = \Phi_L^+ \cup \Phi_S^+$ long & short roots canonical normalization $\alpha \cdot \alpha = \frac{2}{r}$ need scale factors $\{f_\alpha\} = \{f_L, f_S\}$ in *F* to satisfy $\sum_{\alpha} f_{\alpha} \alpha \otimes \alpha = 1$

prepotential

$$F(t) = -\frac{1}{2} \left(f_{\mathsf{L}}(t) \sum_{\alpha \in \Phi_{\mathsf{L}}^{+}} + f_{\mathsf{S}}(t) \sum_{\alpha \in \Phi_{\mathsf{S}}^{+}} \right) (\alpha \cdot x)^{2} \ln |\alpha \cdot x|$$
with

$$f_{\mathsf{L}} = \frac{1}{h^{\nabla}} + (h - h^{\vee}) t \quad \text{and} \quad f_{\mathsf{S}} = \frac{1}{h^{\nabla}} + (h - rh^{\vee}) t$$
normalization:

$$f_{\mathsf{L}} \sum_{\alpha \in \Phi_{\mathsf{L}}^{+}} \alpha \otimes \alpha + f_{\mathsf{S}} \sum_{\alpha \in \Phi_{\mathsf{S}}^{+}} \alpha \otimes \alpha = 1 \quad \text{partition of unity}$$
WDVV \checkmark due to

$$\sum_{\substack{\alpha,\beta \\ \alpha \cdot x \ \beta \cdot x}} \frac{\alpha \cdot \beta}{\alpha \cdot x \ \beta \cdot x} = 0 \quad \text{for} \quad \alpha, \beta \in \Phi^{+} \cap \Pi \quad \forall \Pi$$
one-parameter family!

$$t=0 \text{ solutions were known} \quad [MarGra99, Ves99]$$

$$\begin{array}{lll} \text{example } A_n \oplus A_1 &: \quad \{\alpha\} = \{ e_i - e_j \ , \ \sum_i e_i \ \mid \ 1 \leq i < j \leq n+1 \ \} \\ F_{A_n \oplus A_1} = -\frac{1/2}{n+1} \sum_{i < j} (x^i - x^j)^2 \ln |x^i - x^j| \ - \frac{1/2}{n+1} (\sum_i x^i)^2 \ln |\sum_i x^i| \\ \text{example } G_2 &: \quad \{\alpha\} = \left\{ \frac{1}{\sqrt{3}} (e_i - e_j) \ , \quad \frac{1}{\sqrt{3}} (e_i + e_j - 2e_k) \ \mid \ (i, j, k) \ \text{ cyclic} \right\} \\ F_{G_2} = -\frac{1}{6} f_{\mathrm{S}} (x^1 - x^2)^2 \ln |x^1 - x^2| \ - \frac{1}{6} f_{\mathrm{L}} (x^1 + x^2 - 2x^3)^2 \ln |2x^1 - x^2 - x^3| + \text{cyclic} \\ & \text{with} \quad p = 6 \quad \text{and} \quad f_{\mathrm{S}} = \frac{1}{4} - 6t \ , \quad f_{\mathrm{L}} = \frac{1}{4} + 2t \\ \text{note: center-of-mass decoupling} \ \Leftrightarrow \ \text{projection} \ \perp \ e_1 + e_2 + e_3 \end{array}$$

can we deform the root system solutions (change angles between covectors)?

example of A_n : $p = \frac{1}{2}n(n+1)$ $\sum_{\alpha} f_{\alpha} \alpha \otimes \alpha = 1$ uniquely fixes $\{f_{\alpha}\}$

ortho-polytope idea: $\{\alpha\}$ form the edges of a suitable *n*-simplex incidence of \triangle s take care of WDVV, non-concurrent edges must be orthogonal

counting:

	ray moduli	incidences	simplex moduli	orthogonality	final moduli
#	$\frac{1}{2}n^2(n-1)$	$-\frac{1}{2}(n-2)(n^2-1)$	$\frac{1}{2}(n-1)(n+2)$	$-\frac{1}{2}(n-2)(n+1)$	n
n=2,3,4	2, 9, 24	0, -4, -15	2, 5, 9	0, -2, -5	2, 3, 4

final moduli space $\mathcal{M}(A_n)$ is that of orthocentric *n*-simplices cf. [ChaVes01]

previous example was 1-parameter family in $\mathcal{M}(A_3)$ other weight systems?

ex.: $B_3 \operatorname{roots} 21 \xrightarrow{\times 4} \operatorname{edge set of truncated cube} \Longrightarrow \operatorname{deform: cuboid} \{\alpha \cdot x\} = \{d_1 x^1, d_2 x^2, d_3 x^3; c_3 (c_2 x^1 \pm c_1 x^2), c_1 (c_3 x^2 \pm c_2 x^3), c_2 (c_1 x^3 \pm c_3 x^1)\}$ with $\{f_\alpha\} = \{\frac{c_0^2 + c_1^2 - c_2^2 - c_3^2}{c^2 d_1^2}, \frac{c_0^2 - c_1^2 + c_2^2 - c_3^2}{c^2 d_1^2}, \frac{c_0^2 - c_1^2 - c_2^2 + c_3^2}{c^2 d_1^2}; \frac{1}{c^2 c_3^2}, \frac{1}{c^2 c_1^2}, \frac{1}{c^2 c_2^2}\}$

and $c^2 := c_0^2 + c_1^2 + c_2^2 + c_3^2$ with $c_0, c_i, d_i \in \mathbb{R}$; combinations $\sqrt{f_\alpha} \alpha$ depend only on $\frac{c_i}{c_0} \longrightarrow 3$ parameters

ex.: B_3 weights $\underline{7} \oplus \underline{8} \xrightarrow{\times (4,6)}$ edges of rhombic dodecahedron \implies deform: $\alpha \cdot x = d_1 x^1, \ \beta \cdot x = d_2 x^2, \ \gamma \cdot x = d_3 x^3; \ \frac{\alpha + \beta + \gamma}{2}, \ \frac{\alpha - \beta - \gamma}{2}, \ \frac{-\alpha + \beta - \gamma}{2}, \ \frac{-\alpha - \beta + \gamma}{2}$ with $f_\alpha = \frac{-d_1^2 + d_2^2 + d_3^2}{d^2 d_1^2}, \ f_\beta = \frac{d_1^2 - d_2^2 + d_3^2}{d^2 d_2^2}, \ f_\gamma = \frac{d_1^2 + d_2^2 - d_3^2}{d^2 d_3^2}; \ f_{\text{spinor}} = \frac{2}{d^2}$ and $d^2 := d_1^2 + d_2^2 + d_3^2; \ \text{faces dissected into triangles };$ combinations $\sqrt{f_\alpha} \alpha$ depend only on $\frac{d_i}{d_j} \longrightarrow 2$ parameters

geometry: WDVV fulfilled due to the edge incidence relations of the polytopes

Hypergraphs and matroids

ortho-polytopes fail: construction not unique, edge multiplicities, internal 'edges' first counterexample at n=3, p=10: A =

1 /	$\sqrt{2\sqrt{6}}$	$2\sqrt{6}$	4	0	2	-2	$2\sqrt{3}$	$-2\sqrt{3}$	0	0 /	2
$\frac{1}{2}$	$2\sqrt{6}$	$-2\sqrt{6}$	0	0	3	3	$-\sqrt{3}$	$-\sqrt{3}$	$-3\sqrt{2}$	$\sqrt{6}$	
2	0	0	0	4√3	1	1	$\sqrt{3}$	$\sqrt{3}$	$\sqrt{2}$	$\sqrt{6}$	7 4

better abstract to the incidence structure / set system / hypergraph [Wikipedia]: a generalization of a graph, where an edge can connect any number of vertices

here: covector \rightarrow vertex and plane \rightarrow hyperedge for simplicity drop all 2-vertex hyperedges

simple:each hyperedge is maximal (\supset no smaller hyperedge)linear:the intersection of two hyperedges has at most one vertexcomplete:each vertex pair is contained in some hyperedgeirreducible:the hypergraph (without 2-vertex hyperedges) is connectedorthogonal:each vertex pair in a (dropped) 2-vertex hyperedge is 'orthogonal'

program: construct all linear simple complete irreducible orthogonal hypergraphs for given (n, p) and check the partial isometry conditions (**) for all planes π

problem: orthogonality is not a natural hypergraph property but depends on the dimension n of a possible covector realization almost nothing known

better: capture abstractly the essence of linear dependence \longrightarrow matroids

best illustrated with an example of a graphical matroid: K_4 graph \rightarrow set of minimal circuits = matroid \rightarrow geometric representation $\{\{124\}, \{156\}, \{235\}, \{346\}, \{1236\}, \{1345\}, \{2456\}\}\}$ second row is irrelevant here

disadvantages: also capture higher-rank dependencies (only coplanarity needed); not always representable \rightarrow need simple irred. orthogonal \mathbb{R} -vector matroids

advantages: contraction (and sometimes deletion) preserve WDVV; representability and orthogonality natural; geometric representation is in \mathbb{R}^{n-1}

for n=3: simple matroids \Leftrightarrow simple linear complete hypergraphs

growth of rank n=3 matroids of cardinality p:

p	2	3	4	5	6	7	8	9	10	11	12	•••
simple	0	1	2	4	9	23	68	383	5249	232928	28872972	•••
simple+irred.	0	0	0	1	3	12	41	307	4844	227614	28639650	•••
simple+irred. \mathbb{R} -vec.+ortho.	0	0	0	0	1	1	1	1	3	?	?	

 $\{\{123\},\{145\}\} \qquad \checkmark \qquad A_3 \setminus \{6\}$ \mathbb{R} -vector but not orthogonal $B_{3} \setminus \{4, 5, 9\}$ $\{\{123\},\{1456\}\}$ \mathbb{R} -vector but not orthogonal $\{\{123\}, \{145\}, \{356\}\} \land D(2, 1; \alpha) \setminus \{7\}$ not \mathbb{R} -vector $\{\{123\}, \{145\}, \{356\}, \{246\}\}$ \land $A_3(s,t,u)$ $\{\{123\},\{145\},\{356\},\{347\},\{257\},\{167\}\}$ $\underline{A} \quad \underline{7} \oplus \underline{8} \text{ of } B_3 = D(2,1;\alpha)(s,t)$ Fano matroid – not \mathbb{R} -vector $\{\{123\},\{145\},\{356\},\{347\},\{257\},\{167\},\{246\}\}$ $B_3 \setminus \{9\}(s,t)$ $\{\{123\},\{145\},\{356\},\{347\},\{257\},\{248\},\{1678\}\}$ $B_3(s,t,u)$ $\{\{123\},\{145\},\{347\},\{257\},\{2489\},\{1678\},\{3569\}\}$ \bigotimes $\subset AB(1,3)(t)$ $\{\{150\}, \{167\}, \{259\}, \{268\}, \{456\}, \{479\}, \{480\}, \{1234\}, \{3578\}, \{3690\}\}$ $\subset AB(1,3)(t)$ $\{\{179\}, \{289\}, \{356\}, \{378\}, \{457\}, \{468\}, \{490\}, \{1234\}, \{1580\}, \{2670\}\}$

we generate matroids or hypergraphs with a computer algebra program

have implemented simplicity, linearity, completeness, irreducibility, orthogonality

the program then generates a parametric covector realization if possible

on this we can finally test the partial-isometry conditions (**)

conjecture: our hypergraph/matroid subclass already $(**) \Leftrightarrow WDVV$ solved

running the program . . . check for $p \le 10$ reveals first counterexample at p=10:

Figure 1: All known \lor -systems in dimension 3.

Superspace approach: inertial coordinates in \mathbb{R}^{n+1}

 $\mathcal{N}=4$ superfields $\mathbb{u}^{A}(t,\theta^{a},\overline{\theta}_{a})$, with constraints $D^{2}\mathbb{u}^{A}=0=\overline{D}^{2}\mathbb{u}^{A}$ consequence: $[D^{a},\overline{D}_{a}]\mathbb{u}^{A}=4g^{A}$ with constants g^{A} and $A=1,\ldots,n+1$

 $\mathcal{N}=4 \text{ superconformal action for } u^A(t,\theta,\bar{\theta}) = u^A(t) + O(\theta,\bar{\theta}):$ $S = -\int dt \, d^2\theta \, d^2\bar{\theta} \, G(u) = \frac{1}{2} \int dt \, \left[G_{AB} \, \dot{u}^A \dot{u}^B - 4G_{AB} \, g^A g^B + \text{fermions} \right]$ with a superpotential G(u) subject to $G - G_A u^A = \frac{1}{2} c_A u^A$ for constants c_A

want flat bose metric \Leftrightarrow Riemann $(G_{AB}) = 0 \Leftrightarrow$ $G_{A[BX}G^{XY}G_{YC]D} = 0$ consequence: \exists inertial coordinates x^i s.t. $S = \int dt \left[\frac{1}{2}\delta_{ij}\dot{x}^i\dot{x}^j - V_B^{cl}(x) + \ldots\right]$ goal: find admissible functions $u^A = u^A(x)$ and compute corresponding G, V_B^{cl} integrability conditions

 $\frac{\partial x^{i}}{\partial u^{A}} \left(u(x) \right) \equiv \left((u^{\bullet})^{-1} \right)^{i}_{A} = : w_{A,i} \stackrel{!}{=} \partial_{i} w_{A} \equiv \frac{\partial w_{A}}{\partial x^{i}} (x)$

consequences: $\exists F(x) \text{ s.t. } f_{ijk} := -w_{A,i} u^A_{jk} = \partial_i \partial_j \partial_k F$ obeys WDVV!

superconformality

superpotential

$$G_{ij} + f_{ijk}G_k = -\delta_{ij}$$
 and $x^iG_i - 2G + \frac{1}{2}x^ix^i = 0$
then $G = -u^A w_A$

 $x^{i} u^{A}_{i} = 2 u^{A} \Leftrightarrow u^{A}$ are homogeneous quadratic in x

bosonic potential

$$V_B^{cl} = \frac{1}{2} \delta^{ij} U_i U_j = 2(g^A w_{A,i})^2$$
 with $U = -2g^A w_A$

then $\partial_i U_j - f_{ijk}U_k = 0$ flatness condition automatic!

integrability again

$$u_{i}^{[A} u_{ij}^{B]} = 0 \quad \Leftrightarrow \quad u_{ij}^{A} + f_{ijk} u_{k}^{A} = 0 \quad \text{with } f = -u^{-1} du$$

now $U \neq 0$: three- and four-particle solutions

construct permutation-invariant solutions for n+1=3 WDVV empty

homogeneous quadratic symmetric functions in (x, y, z):

$$u_{1} = (x+y+z)^{2}, \qquad s = \frac{[(2x-y-z)(2y-z-x)(2z-x-y)]^{2}}{[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}]^{3}}$$

$$u_{2} = (x-y)^{2} + (y-z)^{2} + (z-x)^{2},$$

$$u_{3} = [(2x-y-z)(2y-z-x)(2z-x-y)]^{2/3}h(s) \qquad \text{functional freedom}$$

 $\begin{array}{lll} \text{compute} & u_{A,i} \to w_{A,i} \to V_B^{\text{cl}}, \ U, \ F: & \text{integrability automatic} \\ V_B^{\text{cl}} &= \frac{g_1^2}{24u_1} + \frac{1}{324} \Big[(1-2s)g_2^2 + 2s \frac{(h \, g_2 - g_3/\sqrt[3]{s})^2}{(h+3sh')^2} \Big] \Big(\frac{1}{(x-y)^2} + \frac{1}{(y-z)^2} + \frac{1}{(z-x)^2} \Big) \\ &= \frac{g_1^2}{24u_1} + \frac{g_2^2 - 4s^{\frac{2}{3} - \delta}g_2g_3 + 2s^{\frac{1}{3} - 2\delta}g_3^2}{324(1+3\delta)^2} \Big(\frac{1}{(x-y)^2} + \frac{1}{(y-z)^2} + \frac{1}{(z-x)^2} \Big) + \frac{\delta(2+3\delta)}{8(1+3\delta)^2} \frac{g_2^2}{u_2} \\ \end{array}$

for the choice $h(s) = s^{\delta} \Leftrightarrow u_3 = \frac{[(2x-y-z)(2y-z-x)(2z-x-y)]^{2/3+2\delta}}{[(x-y)^2+(y-z)^2+(z-x)^2]^{3\delta}}$

 \sim

prepotentials:

$$U = -\frac{g_1}{6}\ln(x+y+z) - \frac{g_2}{18(1+3\delta)}\ln(x-y)(y-z)(z-x) - \frac{\delta g_2}{4(1+3\delta)}\ln u_2 + O(g_3)$$

$$F = -\frac{1}{6}(x+y+z)^2\ln(x+y+z) + \frac{\delta}{4}u_2\ln u_2$$

$$-\frac{1}{4}\left[(x-y)^2\ln(x-y) + (y-z)^2\ln(y-z) + (z-x)^2\ln(z-x)\right]$$

$$+\frac{1-6\delta}{36}\left[(2x-y-z)^2\ln(2x-y-z) + (2y-z-x)^2\ln(2y-z-x) + (2z-x-y)^2\ln(2z-x-y)\right]$$

 G_2 family plus 'radial term' ~ $[(x-y)^2 + (y-z)^2 + (z-x)^2] \ln[(x-y)^2 + (y-z)^2 + (z-x)^2]$

special cases:

$$\begin{array}{lll} \delta = 0 & \Leftrightarrow & h = 1 & : & V_B^{\mathsf{cl}}(g_0 = g_3 = 0) & \text{is pure Calogero} \\ \delta = \frac{1}{6} & \Leftrightarrow & h = s^{1/6} & : & V_B^{\mathsf{cl}}(g_0 = g_2 = 0) & \text{is pure Calogero} \end{array}$$

$$V_B = V_B^{\mathsf{cl}} + \frac{\hbar^2}{8} F''' F'''$$

yields quantum corrections to the couplings g_i

n+1 = 4: WDVV active \longrightarrow integrability nontrivial \longrightarrow PDEs take known WDVV solution F and solve $u_{ij}^A + f_{ijk}u_k^A = 0$ with f = F'''hypergeometric $_2F_1$ appears in the few solutions u_i^A and $w_{A,i}$ we have found example: based on A_3 solution with 'radial term' $F_{A_3\oplus A_1} = -\frac{1}{8} (\sum_i x^i)^2 \ln |\sum_i x^i| - \frac{1}{8} u_2 \ln u_2 + \frac{1}{8} \sum_{i < j} (x^i - x^j)^2 \ln |x^i - x^j|$

we discovered

$$u_{1} = (x+y+z+w)^{2}$$

$$u_{2} = (x-y)^{2} + (x-z)^{2} + (x-w)^{2} + (y-z)^{2} + (y-w)^{2} + (z-w)^{2}$$

$$u_{3} = u_{2} I(\frac{x+y-z-w}{p q}) \quad \text{and} \quad u_{4} = u_{2} I(\frac{p}{q})$$
with
$$\frac{p^{2} = (x-y+z-w) + 2\sqrt{(w-x)(y-z)}}{q^{2} = (x-y-z+w) + 2\sqrt{(w-y)(x-z)}} \quad \text{and} \quad I(x) = \int_{0}^{x} \frac{dt}{\sqrt{1-t^{4}}}$$

 $\rightarrow w_{A,i}$ and V_B^{cl} are algebraic but not of Calogero type also B_3 solution

Summary

- $\mathcal{N}=4$ superconformal *n*-particle mechanics in d=1 is governed by U and F
- U and F are subject to homogeneity, flatness and WDVV conditions
- covector ansatz for F leads to partial isometry conditions with multipliers λ_{π}
- finite Coxeter root systems and certain deformations thereof are solutions
- orthocentric polytope interpretation for certain solution families
- hypergraphs and matroids yield good candidates but don't guarantee WDVV
- geometric interpretation via flat superpotential $G \longrightarrow$ integrability conditions
- general 3-particle system constructed 3 couplings and one free function