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Conformal guantum mechanics: Calogero system

n—+1 identical particles with unit mass, moving on the real line

Hamiltonian: H = %pipi + Ve(zt,..., 2"TH
so(1,2): [D,H] = —iH, [H,K] = 2iD, [D,K] = iK
quantization: (2", pj] = i,

realization: D = —%(a:ipi—l—pia:i) and K = %azzwz
conformal invariance —s (29;+2)Vy = 0

demand also permutation and translation invariance and two-body forces only

2
— Vp = Z(:cng)? Calogero model
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N =4 superconformal extension: su(1,1|2) algebra

extend so(1,2) to su(l,1|2): (H,D,K) — (H,D,K,Qa,Sa, Ja,C)
with « = 1,2, a =1,2,3 and (Qa)'=0% (S,)'=3% and central charge C

nonvanishing (anti)commutators:

[D,H] = —iH [H, K] = 2iD

[D, K] = +iK [Jas Jp) = iegpede

{Qa, QPY = 2HS,P {Qa, 3P} = +2i(04) P Ja — 2D68" — iC8.°
{Sa, 57} = 2K48,” {Q%, S} = —2i(0a) 3% Ja — 2D3g* 4 1CS 5"
D, Qo] = —5Qa D, Sal = 4554

K, Qa] = +iSa H,Sa] = —iQa

Ja, Qo) = —5(04) Qg Ja, Sal = —3(0a) "S5

D,Q% = —4Q° D,5% = +45°

K,Q% = +is“ [H, 5% = —iQ“

[Ja, QY] = %Qﬁ(ga)ﬁa (Ja, S = %gﬁ(ga)ﬁa




fermionic variables: %, ‘= i T \with § = 1,....n+1 and a = 1,2
Wil =0, {F0d% =0, (¢, 37} = .67
QOa — p’L,‘vDZ)ga 6_28 — pﬂ;za and Soa — wqugj 5’84 — xi,‘;ia

Ho=3pip;, Do=—z(z'p;+piz'), Ko=aa'z", Jo,= %ﬂza(ﬁa)aﬁ@%
free generators fail to obey su(1,1|2) algebra —— interactions are needed!

Qo = Qoo — 1 [SOow V] and H = Ho+V

minimal ansatz to close the algebra [\Wyl99 BGLOA]: Weyl ordering  (...)

Vo= V(@) — U(a)@ht?®) + FFju@) (i 5 0ps)

U;; and F;;, are totally symmetric & homogeneous of degree —2 in {1 ... 2™

— Qo = (pj—12'Uy(@)) ¥ — 52 Fiju(a) (Wl v gl



The structure equations for (F,U): WDVYV, flatness, homogeneity

insert minimal V" ansatz into su(1, 1|2) algebra and demand closure —
Uij = 87;8]-U and Fijkl = azﬁjﬁkﬁlF

two scalar prepotentials U and F’, subject to “structure equations” [Wyl99,BGL04]

(0:010pF) (0p0,0;F) = (0;0,0pF)(0p00;F)| ,  2'0;0,0,F = —3p,

8z-8jU— (87;8j8kF) 8kU = 0 , ajiaiU = —C

linear in U (flatness), quadratic in F' (WDVV), with homogeneity properties
redundancy: U ~ U + constant, F ~ F' 4 quadratic polynomial

potential: Vp = % (o;U)(0;U) + %2 (828]8kF)(828]8kF)

consequence: ' Foog = —0:0.0)F and  2'U;; = —8;U
15kl J1YEkY1 J J



first U=0: covector ansatz for prepotential F’

af;i&i@j@kFZ —0j = (2'0;—2)F = —%x%i = F ~ 2°Infz| + Fhom

breaks translation invariance! homogeneity conditions solved by ansatz [\Wy!99]

F = —% (04-33)2 In|a-x| with Zaio{j = 0jj
iy (8

covectors a = (a1,a,...,0541) € (R™T1HY* or ei@®*TH*
in a(z) = ar = a;z Haoa=:p

coupling constants g and central charge C reside in prepotential U



remaining structure equations take the form

“WDVV” Z p (aiﬁj—ajﬁi)(akﬁl—alﬁk) = 0 [MarGra99,Ves99]
o T B-x
“flatness” 9;0;U + > oo @0l _ 0
o QT
(a-8)3

potential: Vg = 5(8U)-(U) + %QZ

B X B-x

special solutions (C=0): U =0 = Vg=0(h?)
strategy: first solve WDVV, then turn on flat U in this F' background

WDVV homogeneous = covectors projective, norm via Z a@a = 1
(8

it suffices to consider indecomposable covector sets {a}
decouple center of mass acom = (1,1,...,1), reducing (R*+1)* — (R™)*
partial results known for n<3 [Wyl99,ChaVes01,BGLO4,GLPO7,FeiVes07,GLPO8]
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Partial isometry formulation

Sea®aoxl = WDW-z=0 = i5n(n—1)?(n—2)indep'tequations

Z op (a/\ﬁ)®2 —N0 — Z a-p = 0 V7

y - B-x o5 a-x B-x
decompose into separate equations for each plane = € A2((R™)*). Three cases:
case a) m contains zero or one covector = trivial
case b) w contains two covectors, r = a A3 =  orthogonality a- 5 =20

case c) m contains q(>2) covectors = nontrivial condition on 7:

(%) Z a@Ra = M lpr = Mg Pr for M e R and rank(Pr) =2

yields WDVV equation on 7 which is trivially fulfilled for n=2 v



reformulate condition (x) in terms of partial isometries:

=1,...
T definesamap A RP — R” with AAT =1,

nXp matrix A = (Oém)azl D

for each nontrivial plane 7, selectall « € wvia By : RP — R? by {a} — {as}

1=1,....n
so that A = AB;Tr = (ams)szl,...,q maps R? — R"
condition (x) means  |A Al = AP o AlA = M\ Qn (%)

with projectors P on R™ and Q- on RY of rank two and multipliers Ar. Thus:

A Is a solution iff :/4;_ IS a rank-2 partial isometry (xx) for each nontrivial plane =
= A _AlA_ = M A_ note: A% A_B_ A_ splits over R?

= 3 Dy:RI—-R? and Cr:R?—R"” suchthat A_=C!D_
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example n=3, p=©6:

a B ~y o o4 04 > 2
(S [_ 2 + _]
1 ot —3t —3t 0 3w —3w \/7 \/;
A= =10 3vV3 —-3V3t —2v3w V3w 3w w = /2 — 32
0O O 0 2v/3 2V/3 23
AAT =1
nontrivial planes: (aB37), (a B4, (B4, (d/B'Y) AN
orthogonality: a-of = 8- =~-4 =0 a B
1 2t —t —1 1 0 O
Ala gy = S0 V3t =3t = A A, = 3120 1 0| = 32P;
O O 0 O 0O
1 6t 3w —3w 1_%752 6-3t> O 0

— T
w



Deformed root systems and polytopes

take o € @1 = set of positive roots of a simple Lie algebra [MarGra99,Ves99]

Pt = <l>|'_" U CD;' long & short roots canonical normalization a-a = %
need scale factors {fo} = {f., fs} in Ftosatisfy >, foa®a =1
prepotential F(t) = —% (f,_(t) Y+ f5) Y )(oz-:r;)z In|a-z|
ozECDE_ ozECD;_
with f = v+ (h—r")t and fg = 5+ (h—rhY)t
normalization: LY a®a+ fg > a®a =1 partition of unity
aECDL'_ ozECD;_
WDVV v due to > of =0 for B € ®Tnn VI
oy QT B-x
(a7=3)

one-parameter family! t=0 solutions were known |[MarGra99,vVes99]
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example An ®© A1: {a} = {e—e;, 256 | 1<i<j<n+l}

Fp,ma, = —#_1 (z'—2?)“In |z'—2!| — n—_{_l(zz'xz) In 32 x|
i<j

example Go:  {a} = {%(ei—ej), %(ei+ej—26k) ‘ (1,7, k) cyclic}

Fg, = —%fs (z1=22)2In |zt—z?| — %f]_ (zl42°—223)? In |22 —z°— 23| + cyclic
with  p=6 and fg = z-6t , fL = z+2t

note: center-of-mass decoupling < projection L e{+er+e3

13



can we deform the root system solutions (change angles between covectors)?
example of Ay: p = %n(n—l—l) Yoo faa®a = 1 uniquely fixes { fo}

ortho-polytope idea:  {«a} form the edges of a suitable n-simplex
iIncidence of As take care of WDVV, non-concurrent edges must be orthogonal

counting:
ray moduli incidences simplex moduli orthogonality final moduli
# | nP(n-1) —3(n=2)(n*-1) F(n-1)(n+2) —3(n-2)(n+1) n
n=2,3,4| 2,9, 24 0,—4,—15 2,5,9 0,-2,—-5 2,3, 4
final moduli space M (Ay,) is that of orthocentric n-simplices cf. [ChaVes01]

previous example was 1-parameter family in M(A3) other weight systems?
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ex.. Bz roots 21 :Xé edge set of truncated cube —— deform: cuboid

{ooa:} = {dlazl, doz?, dz3z>: c3(coxtte1z?), cq(czz’terz), 62(01:1:3:|:C3:1:1)}

2,2 2 2 2 2 2 2402
with < for = cgtei—c3—c3 cg—citc—cg cgoci—c3tei . 1 1 1
! 2 &2 ) 2 &2 ) 2 d2 22 232 23

and c2 = c%—l—c%—l—c%—l—c% with cq, c;,d; € R ;

combinations / f, a depend only on cc—é — 3 parameters

4
ex.. Bz weights 7 ¢ 8 XL——’S) edges of rhombic dodecahedron —— deform:

- 1 o— —a+pB—y —a—
oz = dizt, Bz = doz?, v = d3z°; +ﬁ+’7 g Y, _55 85 25+’V
2 2 2 24 12 2, 2 12
with  fo, = _dlid?d?’ , Jfg= dl_gQ_Qi_d?’ , Jy= d1+§22_d3 . Jspinor = %

d2 d? d2 d3 d2 d2 P d

and d? := d2+d3+d3 ; faces dissected into triangles ;

combinations / fo a depend only on % — 2 parameters
J

geometry: WDVV fulfilled due to the edge incidence relations of the polytopes
15



Hypergraphs and matroids

ortho-polytopes fail: ~ construction not unique, edge multiplicities, internal ‘edges’
first counterexample at n=3, p=10: A =

1 2vV6 26 4 0 2 —2 23 —2v3 0 0
26 —-2v/6 0 0 3 3 —v/3 —/3 -3V/2 V6
0 0 0 43 1 1 V3 V3 V2 V6

better abstract to the incidence structure / set system / hypergraph [Wikipedial:
a generalization of a graph, where an edge can connect any number of vertices

3 2 4

here: covector — vertex and plane — hyperedge

for simplicity drop all 2-vertex hyperedges D s '
simple: each hyperedge is maximal (O no smaller hyperedge) « <% %
linear: the intersection of two hyperedges has at most one vertex

complete: each vertex pair is contained in some hyperedge
irreducible: the hypergraph (without 2-vertex hyperedges) is connected
orthogonal: each vertex pair in a (dropped) 2-vertex hyperedge is ‘orthogonal’

16



program: construct all linear simple complete irreducible orthogonal hypergraphs
for given (n, p) and check the partial isometry conditions (xx) for all planes =

problem: orthogonality is not a natural hypergraph property but depends on the
dimension n of a possible covector realization almost nothing known

better: capture abstractly the essence of linear dependence — matroids

best illustrated with an example of a graphical matroid:
K4 graph — setof minimal circuits = matroid — geometric representation

4 ({124}, {156}, {235}, {346},

5

3 L {1236}, {1345}, {2456} } 2 o =
second row is irrelevant here

6

disadvantages: also capture higher-rank dependencies (only coplanarity needed);
not always representable — need simple irred. orthogonal R-vector matroids

advantages: contraction (and sometimes deletion) preserve WDVV;,
representability and orthogonality natural; geometric representation is in R 1

17



forn=3: simple matroids <« simple linear complete hypergraphs

growth of rank n=3 matroids of cardinality p:

D 2 3 456 7 8 9 10 11 12
simple 0 1 2 4 9 23 68 383 5249 232928 28872972
simple+irred. |0 0 0 1 3 12 41 307 4844 227614 28639650
smplesiredio 0 001 1 1 1 3 2
{{123},{145}} . A3\{6} R-vector but not orthogonal
{{123},{1456}} ~ .. B3\{4,5,9} R-vector but not orthogonal
{{123},{145},{356}} s« D(2,1;a)\{7} not R-vector
{{123},{145},{356},{246}} s = s Az(s,t,u)

{{123},{145},{356},{347},{257},{167}} ﬁ' 7d80fBs = D(2,1;a)(s,t)
{{123}.,{145},{356},{347},{257},{167},{246}}  s3» Fano matroid — not R-vector
{{123},{145},{356},{347},{257},{248},{1678}} S B3\{9}(s,t)

{{123},{145},{347},{257},{2489},{1678},{3569}} &_ B3z(s,t,u)
{{150},{167},{259},{268},{456},{479},{480},{1234},{3578},{3690}} B> C AB(1,3)(¢)

({179}.{289},{356},{378},{457},{468} {490} {1234} {1580},{2670}} (4 C AB(1,3)(¢)

18



we generate matroids or hypergraphs with a computer algebra program

have implemented simplicity, linearity, completeness, irreducibility, orthogonality
the program then generates a parametric covector realization if possible

on this we can finally test the partial-isometry conditions (xx*)

conjecture:  our hypergraph/matroid subclass already (xx) < WDVV solved

running the program . ..

check for p<10 reveals

first counterexample at p=10:

<
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B,(¥;c) Afc)

B2
A (E,, ) ;
(E,A) E, A, T
(Bg A9 E.A)
G AR, _AER
(B0, A),
G(t)
2 2 2
° (E7, A1XA2) ° (EB’ AzxA1) o(Es, A1XA3) ° (H4, A1)
3

.(Es’A2XA3) o (ES,A1XA2) o(EB,A1xA4) o Hy

20

Figure 1: All known V-systems in dimension 3.



Superspace approach: inertial coordinates in R* 1

N=4 superfields u4(t, 8%, 8,), with constraints D2u4 = 0 = D?u4

consequence; [D% DgyJu? = 4 g4 with constants g and A = 1,...,n+1

N =4 superconformal action for u?(¢,6,8) = u(¢t) + O(6, 9):
S = —[dtd?0d?0 G(n) = L /dt [GAB uuP — 4G 45 gYgP + fermions}

with a superpotential G(u) subjectto G — G qu? = 3c u? for constants c4

want flat bose metric < Riemann(Gyp) =0 < GA[BXGXYGYC]D =0

consequence: 3 inertial coordinates z* s.t. S = [dt [%&;jm'%j ~ V() + .. }

goal: find admissible functions u4 = u4(z) and compute corresponding G, V§

21



oz’ ow 4

integrability conditions (u(a:)) = ((u',)—l)iA =lwy, - dyw g = —=

ou 1!
consequences: 3 F(x) st fijr = —way uf;‘.k = 0,00, F" obeys WDVV!
superconformality — z'u4 =2u? <  wu“ are homogeneous quadratic in «
superpotential Gij+ fijkGr = —6;; and z'G; — 2G + Saiz? = 0

then |G = —quA
bosonic potential VE =L1590,U; = 2(gMwa )2 with |U = —2g%wy

then 9,U; — f;;1Ur = O  flatness condition automatic!

(A, B] _

Integrability again jUG =

22

0 & uéj + fijk ’U/% = 0| with f = —u"1ldu



now U=0: three- and four-particle solutions

construct permutation-invariant solutions for n+1 = 3 WDVV empty

homogeneous quadratic symmetric functions in (x, vy, 2):

_ 2 _ [Ca—y—2)(2y—z—x)(2z—z—1)]?
= Lot T e
up = (z—y)°+ (y—2)° + (z—2)~,
uz = [(2:1:—y—z)(2y—z—:c)(2z—:c—y)]2/3 h(s) functional freedom
compute uq; — wa; — V§, U, F: integrability automatic
| _ 95 1 2 (hgo—g3/¥/5)? 1 1 1
V§ R Tzl + @[(1—25)92 + 25 (g}f—l—gih’)Q ] ((w—y)2+(y—z)2+(z—x)2)
2 1
g3 g2—4s3 Ogogs+2s3 202, 4 1 1 5 (2+38) 95
R 24’1“1 + 324 (1436)2 3<(x—y)2+(y—z)2+(z—:c)2> + 8(1—|—35)2U§

[(2z—y—2)(2y—z2—1) (2z—z—1y)]2/3120
[(z—y)2+(y—2)2+(z—2)?]3

for the choice h(s) = << wugz =
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prepotentials:

U = —%In(ety+2) — 150255 N@—y) (y—2) (z—2) — 50155 vz + O(g3)
F = —iaty+2)?In(a+y+z) + Juzinus

—4 (@=)? In(@—y) + (y—2)2In(y—2) + (z—2)? In(z—2)

+1580 (20—y—2)2 In(2u—y—2) +(2y—2—2)2 In(2y—2—2)+(2:—2—y)? In(2:—2—y)]

G, family plus ‘radial term’”  ~ [((z—y)24+(y—2)2+(z—2)2] In[(z—y) 2+ (y—2) 24 (z—2)?]

special cases:

0=0 < h=1 ; vg'(go=g3=0) IS pure Calogero
o = % & h=s0 Vg(go:gQ:O) is pure Calogero

2 . . .
Vg = VE+LF"F" yields quantum corrections to the couplings g;
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n+1=4. WDVV active —— integrability nontrivial —— PDEs

take known WDVYV solution F' and solve u;% + fijku;j =0 with f=F"

hypergeometric » F7 appears in the few solutions uff} and w 4 ; we have found

example: based on A3 solution with ‘radial term’
Fa,pa, = —3 (Ciz)2In|Y 2| — guainug + § Y (z~27)?In |z’—a7]
i<j
we discovered
up = (z+y+ztw)?
ug = (2—y)° + (z—2)° + (z—w)* + (y—2)* + (y—w)* + (z—w)?
u3 uo I(x_l_yp_qz_w) and Ug = uo I(%)

p? = (z—ytz—w) + 2,/ (w—2)(y—=2) vy
d I(x) = ¢
2 = (z—y—z+w) + 2\/(w—y) (z—2) - ) /0 Vi-tt

—  wy ; and Vg' are algebraic but not of Calogero type also B3 solution

with
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Summary

N =4 superconformal n-particle mechanics in d=1 is governed by U and F
U and F' are subject to homogeneity, flathess and WDVV conditions
covector ansatz for F' leads to partial isometry conditions with multipliers A\
finite Coxeter root systems and certain deformations thereof are solutions
orthocentric polytope interpretation for certain solution families

hypergraphs and matroids yield good candidates but don’t guarantee WDVV
geometric interpretation via flat superpotential G — integrability conditions
general 3-particle system constructed — 3 couplings and one free function

higher-particle systems exist but tedious to construct «— hypergeometric
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