Zhanna Kuznetsova

Department of Mathematics, Computing and Cognition
Federal University of ABC — Sao Paulo, Brazil

Supersymmetric extension of the Hopf fibrations
and the related non-linear supermultiplets.

Talk given at the Workshop : Supersymmetry and Integrable Systems

Yerevan, August, 24, 2010

L. Faria Carvalho, Z. K. and F. Toppan, Nucl. Phys B 834 (2010) 237.
M. Gonzales, Z. K., A. Nersessian, F. Toppan and V. Yeghikyan,
Phys.Rev.D80 (2009) 025002.




The four Hopf maps (for k = 1,2,4,8) can be il-
lustrated by the following commutative diagram

which connects four spaces (two Euclidean spaces

2k b k+1 . .
R — R T and two spheres) which, for later convenience,

Pl 17 can be identified as 1,1, IT1,1V according to
g2k-1 M, gk AN
P 4
The four arrows correspond to the following h
maps: 17 — IV

- the bilinear map p: I — I1, sending coordinates . 1

i ¢ R% into coordinates 7 € R*t1 accordingto P+ U & = U Y,
- the restrictions p, o’ on spheres, where p : I —

IIT and p' : II — IV;

- the Hopf map A : IT — IV, admitting S 1 as




: — ™
The bilinearmap P - U= 2, —=u 7;u, ViV +7/j7/i :277ij

This map reflects the connection between the size of gamma matrix (= the
number of components in the vector u)

and the associated to the “metric “ n; “dimension” D = p + g in (= number of
components of the vector x) .

For k = 1,2,4,8 the map preserves the norm,
allowing to induce the map h from p:

v

u u=R|—>93T

r =1y, with r — R?.

By setting k = 2!, the four Hopf maps h will be

referred to (for | = 0,1, 2,3 respectively) as the
oth, 15t ond gnd 374 Hopf map.




In the following we will give a detailed descrip-
tion of the supersymmetric extension of the first
Hopf map (k = 2), corresponding to the diagram

R4 BN R3
P Il
S3 _ﬁ+ SQ

Induced by the NN = 4 (4,4) root supermul-
tiplet, three more (inequivalent) N = 4 off-
shell supermultiplets are obtained.

(3,4,1)-lin

(3,4,1) - > (2,4,2) -
nonlinear nonlinear

W



The N=4 irreducible representations:




(4,4);, — (3,4,1);, : the SUSY extension of the bilinear bosonic I 1
transformation. g t g2
B s (48 — (345
ro = 2(uiug — Ugls), | | -
R — u12 + %22 E ’US32 e uf, (3,4; 1)n.l = (2141 Q)nl

1 = 2(u1ts +ugts + usr + ugths),
po = 2(u1ths — ugtPs — usthy + uatn),
ps = 20wty + ugths — usihs — way),
pa = 2(u1ths — ugthr + ushy — uabs),
I = 2(uity — ugtn + ustly — ugtis) + 4(01s + Pstha).

The transformation (4,4) — (3,4,1),, is induced after indentifying the three
target coordinates entering (3,4,1),, with the coordinates of the stereographic
projection of the S embedded in R4

wz T R . ’U;4?
_ 1Yy

5{} — R 3
. Riy

@ = R — ’Uﬂ4.

e -

for =123

for g=.1,2,3.4



Similarly, the transformation (3,4, 1), — (2,4,2),; is induced after identifying the two
target, coordinates entering (2,4, 2),; with the coordinates of the stereographic projection
of the 8% sphere embedded in R®. For (3,4,1), — (2,4,2), we have

T;

Zz e 5 fO'r ?;:]_,2,
T —dg
T .
A =1,2,3.4
?73 ?,,_xgﬁ fO?” j s Ly oty Ly
P
hl —= & »
T — I3
Ry =
T — Xg

The lagt transformation connects the component fields of the two nonlinear supermulti-
plets. It corresponds to a nonlinear version of the dressing transformation.

o = . for i=1,2,

T
w;

R

%633 fOrr j:13233343

r

Rga

T

R

(3 — wsg).




(4,4) — (3,4, V)in

| !
(3,4, 1)y — (2,4,2)y

Supersymmetric transformations.

Their component fields are parametrized ac-
cording to

(m,m,m}m;l@l,%,wa,¢4) —  (z1,20,13; pi1, pi2, 43, ia; f)
(w1, wo, w3; €1,60,€3,8419)  — (21, 22,m1,M2, M3, 74; by, ho)

T he greek letters have been employed to denote
the fermionic fields; w, x,w, Z denote the bosonic
target coordinates of the respective supermulti-
plets, while f,g,h1 > denote the auxiliary fields.

i [ 82 | Q= | Qa Q1| & | Gs | &
uil | Y1 | P2 Y3 | 14 x1 | p1 | —p2 | —H3 | pa
(4,4), uz | Y2 | Y1 | P4 | —Ys T2 | g2 | g1 | —H4 | —p3
1 lin uz | Y3 | —Ya | —Y1 | 2 (3,4,1);, 3 | 43 | M4 gl ,(_L?
ug | pa | Y3 | =2 | =t p1| 1| a2 3 -
Y1 | w1 | —wa | —us | —ua pig | &g | —wx | f x3
) u2 u1 —Uq u3 H3 | X3 __f —&L1 | T2
Y3 | us | ug w1 | —u2 pa | F | @3 | —35 | mi
Ya | w4 | —uz | ug U1 J | pa | —ps]| p2 | —p1




SUSY transformations of (3,4,1),;, multiplet:

@1 Q2 @3 &
wy £+ %(wﬂfﬁl) §a + %(’wlfg) §o — %(’wﬂfz) £ = %(wvﬁ)
Wy §o + %(wzfﬁl) —&1 + £ (wads) £q — l(‘wz?fz) —&3 — H(waéy)
Wy Lo a (w3§4) —£4 + (’w3§3) —&1 — (w3§2) 2 — —(w3§1)
&1 | Wy — E(’wﬂ} + &§16a) | —2 + (’wQQ —£16s) | —3 + (wgg + £160) —g
&y | g — S (wag + Exby) | iy — %(’wlg + &283) —g 3 — 5 (wsg + &1é2)
&y | w3 — L(wag + &3&4) g Wy — (w19 + &&s) | —a+ 5(wag — &183)
&4 g —w3 + %(‘u{gg + &36a) | Wa — %(w;g + &364) — %(wl_g + £1€4)
g €4 —&3 —&2 —&1

SUSY transformations of (2,4,2),,;, multiplet:

1 o W3 o
21 m + ;(2173) —1 + (21774) —1a + 7 (21m1) s+ 5 (21m2)
29 2 + - (22773) m + 5 (zom) —14 + 5 (zam1) —13 + ;(227p)
m | 21— 2(2ths +mme) | 22— $(z2hy + ) h —hg — 2(mne)
N2 | 22 — %(2‘27’&1 G 772773) & Koo %(2‘1}51 o 772774) ho — %(Thﬁz) hq
73 hy —dig — %(773774) =& %(21711 +mmns) | —22 + %(Zghq + 12m3)
74 ha — 2(1374) hy —Zo + 2(zahy + mna) | 21— {21k 4 mana)
Py M3 M4 m M2
ho | e — p(Pang — Rons) | —s + 2(hans + hona) | 2 — 2 (hamp + hom) | —1h

+ 2(hamy + hate)




A few comments are in order:

- The non-linearity of the (3,4,1),; and (2,4, 2),; supertransformations is the mildest pos-
sible nonlinearity, since at most bilinear combinations of the component fields appear in
the entries.

- The constant parameters R (entering (3,4,1),;) and r (entering (2,4,2),;) can be re-
absorbed (set equal to 1) through a suitable rescaling of the component fields. It is
however convenient to present them explicitly to show that in the contraction limit (for
R,r — o0) the linear supermultiplets (3,4, 1), and, respectively, (2,4, 2);, are recovered.
As a consequence, (3,4,1),; and (2,4, 2),,; are more general than the corresponding linear
supermultiplets with the same field content. Indeed, while the latter can be recovered
from the non-linear ones, the converse is not true, as it will be clear from the discussion
at the end of the next Section.




Invariant Supersymmetric Actions

The invariant action S = % f dtL 1s expressed through the lagrangian £ s.t.
= Q10nQsQu(F)

where F' is the unconstrained prepotential.

The invariant Lagrangian for (4,4) multiplet :

Lr = Oir® +2is® +is® +ig® — b — Yatho — Yaths — Pathy) +

(01D) (o (Ynha + sthn) + vis(Wr1Ps — Wotda) + va(thaths + otls)) +
(82®) (—u1 (V102 + atba) + Ua(P11y + oths) — ua(¥hrds — Uahy)) +
(83D) (—uy (1103 — b)) — a(W1thy + aids) — Ug(Wits + W3thy)) +
(04®)(—iy (12 + Prbs) +1ip(hds — hrbs) — s (thrtda + bathy)) +
(L) (h1b21b3tby),

Here the function @ is determined in terms of the prepotential F(u;).

O = OF (up,ug,us,tq) + O5F (ug,un,us,ug) + O F (uy, g, g, ug) + 05 F (ug,ug, us, uq)

DF (ul,ug,ug,u4) ; (24)



For (3,4,1);,the corresponding Lagrangian is given by

L = D@1+ 22° + #3° + f% — papis — potia — paths — papia) +
(01 @) (X1 oo + prapea) + X3(papes — popea) + f(pt1foa + propes)) +
(02 @) (— 21 (p1peo + prapra) + X3(prpea + proprs) — fp1ps — prapra)) +
(03P)(—Z1(pr13 — prappa) — Talppapra + papss) + Fpipsa + papea)) +
(D) (pe1 propespea)-

where @ is defined by
o = (912F (Il,xg,ﬂfg) +83F (Il,IQ,Ig) *|*8§F (Il,Ig,Ig) =F (Il,xg,fﬁg)

For (3,4,1),, we construct the invariant action in terms of prepotential F(p) that can
be expressed as a function of coordinate p

p = V%%+w§+w§

The function A(p) entering the Lagrangian A(p) i —F(p) = F




Ly = [21‘1 + A’] (w% + b2 12 + g7 — &6 — Eaby — &35 — 5454) +
;['02214 - 214[ - AN] [wl (wz (5152 + 5354) + ws (5153 - 5254)) -

—3 (’wl (€160 + Eaby) — wa(&ely + 5253)) — (’w1 (€165 — &a&a) + wa (&6 + fzfs)) =

—o(wi (&8t &) — wa (16 — &) + ws(6160 + &580) )] + EA” + A6 gtk +

%{ — [%A + A'] (TU1’LU1 + Wty + wst)Q - [%A +4A" + PAH] )

'(7171 (6164 + E26a) — w2 (&165 — Ea&a) + w3 (G160 + 5354))} +

%{p 24+ pA'] (5 + w0 + 03 + 26 - 611 — o — &os — &ada) - [%A +a4 +pA"]
Jan (s (816 + G080) + wa(16s — ) ) — b (wi (6280 + &68) —

—wa (€161 + €a6s) ) — s (wn (61 — ) + wa(8uéa + Eaa) ) +

2% (w (6160 + §28) — w6165 — §a8) + wa(616a + &680) )| +

2 [iA 4144 + 16pA" + pQAW] 51525354} +

1
@{2’0 [QA = pA'] (withy + Wwothy + wWaths) g — ,0[6A = Bl = pzA”] :
'(7171 (G160 + &&3) — 2(&1€3 — &84) + w3 (G1ba + 5354))} +

%{pg [QA = ,OA’] g>+p [GA + 6pA" + ,0214”] (w1 (6164 + &8&3) — wa (6163 — &84) +

ws (&1 + 5354))9 +p [Q4A +36pA" +12p°4" + PgAm] 51525354}- . (29



Prepotentials and their associated sigma-models.

The associated sigma-models are constructed by
» consistently setting equal to zero all the fermionic fields in the supermultiplets;
* solving the algebraic equations of motion for the auxiliary fields;
* re-expressing the resulting lagrangiansas | — J; X X

In our case the metric gj; is obtained from prepotential F.

For the (3,4,1), multiplet with prepotential F(p) the metric is | = £ €0S(61)sIn(&;)

diagonalized when expressed in terms of the redefined target |@, = o sin(6,)sin(6,)

coordinates. w, = pCcos(6,)
2
H e B 4(,0 +1) " ’
e nonvanishing g,, = loF"(p)+ F'(p)]
components of the P
metric are 0y = P(P? +1)sin(G,) oF"(p) + F'(p)]
Q5,0 = P(P° +D[PF"(0) + F'(0)]




SOME OPEN PROBLEMS AND FUTURE INVESTIGATIONS
« Supersymmetrie extension on 2nd and 3d Hopf maps

o Stereographic projection is not covariant with respect to U(1).
Sperical coordinates.

* Make the fiber local (gauge field).

» Classification of SUSY nonlinear.

Thank you for the attention.
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