Zhanna Kuznetsova

Department of Mathematics, Computing and Cognition Federal University of ABC – São Paulo, Brazil

Supersymmetric extension of the Hopf fibrations and the related non-linear supermultiplets.

Talk given at the Workshop : Supersymmetry and Integrable Systems

Yerevan, August, 24, 2010

- L. Faria Carvalho, Z. K. and F. Toppan, Nucl. Phys B 834 (2010) 237.
- M. Gonzales, Z. K., A. Nersessian, F. Toppan and V. Yeghikyan, Phys.Rev.D80 (2009) 025002.

• Papers on classification of 1D SUSY multiplets.

The four Hopf maps (for k = 1, 2, 4, 8) can be illustrated by the following commutative diagram

$$\begin{array}{cccc} \mathbf{R}^{2k} & \stackrel{p}{\longrightarrow} & \mathbf{R}^{k+1} \\ {}^{\rho} \downarrow & & \downarrow^{\rho'} \\ \mathbf{S}^{2k-1} & \stackrel{h}{\longrightarrow} & \mathbf{S}^{k} \end{array}$$

which connects four spaces (two Euclidean spaces and two spheres) which, for later convenience, can be identified as *I*, *II*, *III*, *IV* according to

 $\rho \downarrow$

The four arrows correspond to the following maps:

- the bilinear map $p: I \to II$, sending coordinates $\vec{u} \in \mathbb{R}^{2k}$ into coordinates $\vec{x} \in \mathbb{R}^{k+1}$ according to p

- the restrictions ρ, ρ' on spheres, where $\rho : I \rightarrow III$ and $\rho' : II \rightarrow IV$;

- the Hopf map $h:II \rightarrow IV$, admitting \mathbf{S}^{k-1} as a fiber

$$\dot{u} : \vec{u} \mapsto x_i = u^T \gamma_i u,$$

The bilinear map $p: \quad \vec{u} \mapsto x_i = u^T \gamma_i u,$

$$\gamma_i \gamma_j + \gamma_j \gamma_i = 2\eta_{ij}$$

This map reflects the connection between the size of gamma matrix (= the number of components in the vector **u**) and the associated to the "metric " η_{ij} "dimension" D = p + q in (= number of components of the vector **x**).

For k = 1, 2, 4, 8 the map preserves the norm, allowing to induce the map h from p:

$$u^T u = R \mapsto x^T x = r$$
, with $r = R^2$.

By setting $k = 2^{l}$, the four Hopf maps h will be referred to (for l = 0, 1, 2, 3 respectively) as the $0^{th}, 1^{st}, 2^{nd}$ and 3^{rd} Hopf map.

In the following we will give a detailed description of the supersymmetric extension of the first Hopf map (k = 2), corresponding to the diagram

Induced by the $\mathcal{N} = 4$ (4,4) root supermultiplet, three more (inequivalent) $\mathcal{N} = 4$ off-shell supermultiplets are obtained.

The N=4 irreducible representations:

 $(4,4)_{lin} \rightarrow (3,4,1)_{lin}$: the SUSY extension of the bilinear bosonic transformation.

 $\begin{array}{rcl} x_1 &=& 2(u_1u_3+u_2u_4), \\ x_2 &=& 2(u_1u_4-u_2u_3), \\ x_3 &=& {u_1}^2+{u_2}^2-{u_3}^2-{u_4}^2, \\ \mu_1 &=& 2(u_1\psi_3+u_2\psi_4+u_3\psi_1+u_4\psi_2), \\ \mu_2 &=& 2(u_1\psi_4-u_2\psi_3-u_3\psi_2+u_4\psi_1), \\ \mu_3 &=& 2(u_1\psi_1+u_2\psi_2-u_3\psi_3-u_4\psi_4), \\ \mu_4 &=& 2(u_1\psi_2-u_2\psi_1+u_3\psi_4-u_4\psi_3), \\ f &=& 2(u_1\dot{u}_2-u_2\dot{u}_1+u_3\dot{u}_4-u_4\dot{u}_3)+4(\psi_1\psi_2+\psi_3\psi_4). \end{array}$

 $\begin{array}{cccc} (4,4) & \longrightarrow & (3,4,1)_{lin} \\ \downarrow & & \downarrow \\ (3,4,1)_{nl} & \longrightarrow & (2,4,2)_{nl} \end{array}$

 $\mathbf{R}^{4} \xrightarrow{p}$

 $S^3 \xrightarrow{h}$

ρ

 \mathbf{R}^3

 S^2

The transformation $(4,4) \rightarrow (3,4,1)_{nl}$ is induced after indentifying the three target coordinates entering $(3,4,1)_{nl}$ with the coordinates of the stereographic projection of the S³ embedded in R⁴.

$$w_{i} = \frac{Ru_{i}}{R - u_{4}}, \quad for \quad i = 1, 2, 3,$$

$$\xi_{j} = \frac{R\psi_{j}}{R - u_{4}}, \quad for \quad j = 1, 2, 3, 4$$

$$g = \frac{R\dot{u}_{4}}{R - u_{4}}.$$

Similarly, the transformation $(3,4,1)_{lin} \rightarrow (2,4,2)_{nl}$ is induced after identifying the two target coordinates entering $(2,4,2)_{nl}$ with the coordinates of the stereographic projection of the \mathbf{S}^2 sphere embedded in \mathbf{R}^3 . For $(3,4,1)_{lin} \rightarrow (2,4,2)_{nl}$ we have

$$z_{i} = \frac{rx_{i}}{r - x_{3}}, \quad for \quad i = 1, 2,$$

$$\eta_{j} = \frac{r\mu_{j}}{r - x_{3}}, \quad for \quad j = 1, 2, 3, 4,$$

$$h_{1} = \frac{r\dot{x}_{3}}{r - x_{3}},$$

$$h_{2} = \frac{rf}{r - x_{3}}.$$

The last transformation connects the component fields of the two nonlinear supermultiplets. It corresponds to a nonlinear version of the dressing transformation.

$$z_{i} = \frac{r}{R}w_{i}, \quad for \quad i = 1, 2,$$

$$\eta_{j} = \frac{r}{R}\xi_{j}, \quad for \quad j = 1, 2, 3, 4,$$

$$h_{1} = \frac{r}{R}g,$$

$$h_{2} = \frac{r}{R}(\dot{w}_{3} - w_{3}g).$$

Supersymmetric transformations.

 $\begin{array}{cccc} (4,4) & \longrightarrow & (3,4,1)_{lin} \\ \downarrow & & \downarrow \\ (3,4,1)_{nl} & \longrightarrow & (2,4,2)_{nl} \end{array}$

Their component fields are parametrized according to

The greek letters have been employed to denote the fermionic fields; $\vec{u}, \vec{x}, \vec{w}, \vec{z}$ denote the bosonic target coordinates of the respective supermultiplets, while $f, g, h_{1,2}$ denote the auxiliary fields.

 $(3,4,1)_{lin}$

(4	.4)	lin
'	יי,	lın

	Q_1	Q_2	Q_3	Q_4
u_1	ψ_1	ψ_2	ψ_{3}	ψ_4
u_2	ψ_2	$-\psi_1$	ψ_4	$-\psi_3$
u_3	ψ_{3}	$-\psi_4$	$-\psi_1$	ψ_2
u_4	ψ_4	ψ_3	$-\psi_2$	$-\psi_1$
ψ_1	\dot{u}_1	$-\dot{u}_2$	$-\dot{u}_3$	$-\dot{u}_4$
ψ_2	\dot{u}_2	\dot{u}_1	$-\dot{u}_4$	\dot{u}_3
ψ_{3}	\dot{u}_3	\dot{u}_4	\dot{u}_1	$-\dot{u}_2$
ψ_4	\dot{u}_4	$-\dot{u}_3$	\dot{u}_2	\dot{u}_1
	$egin{array}{c} u_1 \ u_2 \ u_3 \ u_4 \ \psi_1 \ \psi_2 \ \psi_3 \ \psi_4 \end{array}$	$\begin{array}{c c} & Q_1 \\ u_1 & \psi_1 \\ u_2 & \psi_2 \\ u_3 & \psi_3 \\ u_4 & \psi_4 \\ \psi_1 & \dot{u}_1 \\ \psi_2 & \dot{u}_2 \\ \psi_3 & \dot{u}_3 \\ \psi_4 & \dot{u}_4 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Q_1	Q_2	Q_3	Q_4
x_1	μ_1	$-\mu_2$	$-\mu_3$	μ_4
x_2	μ_2	μ_1	$-\mu_4$	$-\mu_3$
x_3	μ_3	μ_4	μ_1	μ_2
μ_1	\dot{x}_1	\dot{x}_2	\dot{x}_3	-f
μ_2	\dot{x}_2	$-\dot{x}_1$	f	\dot{x}_{3}
μ_3	\dot{x}_3	-f	$-\dot{x}_1$	$-\dot{x}_2$
μ_4	f	\dot{x}_{3}	$-\dot{x}_{2}$	\dot{x}_1
f	μ ₄	$-\dot{\mu}_3$	$\dot{\mu}_2$	$-\dot{\mu}_1$

SUSY transformations of $(3,4,1)_{nlin}$ multiplet:

	Q_1	Q_2	Q_3	Q_4
w_1	$\xi_1 + rac{1}{R}(w_1\xi_4)$	$\xi_2+rac{1}{R}(w_1\xi_3)$	$\xi_2 - rac{1}{R}(w_1\xi_2)$	$\xi_4 - rac{1}{R}(w_1\xi_1)$
w_2	$\xi_2+rac{1}{R}(w_2\xi_4)$	$-\xi_1+rac{1}{R}(w_2\xi_3)$	$\xi_4 - rac{1}{R}(w_2\xi_2)$	$-\xi_3-rac{1}{R}(w_2\xi_1)$
w_3	$\xi_3+rac{1}{R}(w_3\xi_4)$	$-\xi_4+rac{1}{R}(w_3\xi_3)$	$-\xi_1-rac{1}{R}(w_3\xi_2)$	$\xi_2 - rac{1}{R}(w_3\xi_1)$
ξ_1	$\dot{w}_1 - \frac{1}{R}(w_1g + \xi_1\xi_4)$	$-\dot{w}_2 + rac{1}{R}(w_2g - \xi_1\xi_3)$	$-\dot{w}_3 + rac{1}{R}(w_3g + \xi_1\xi_2)$	-g
ξ_2	$\dot{w}_2 - rac{1}{R}(w_2g + \xi_2\xi_4)$	$\dot{w}_1 - rac{1}{R}(w_1g + \xi_2\xi_3)$	-g	$\dot{w}_3-rac{1}{R}(w_3g+\xi_1\xi_2)$
ξ_3	$\dot{w}_3 - \frac{1}{R}(w_3g + \xi_3\xi_4)$	g	$\dot{w}_1 - rac{1}{R}(w_1g+\xi_2\xi_3)$	$-\dot{w}_2 + rac{1}{R}(w_2g - \xi_1\xi_3)$
ξ_4	g	$-\dot{w}_3 + rac{1}{R}(w_3g + \xi_3\xi_4)$	$\dot{w}_2 - rac{1}{R}(w_2g+\xi_2\xi_4)$	$\dot{w}_1 - rac{1}{R}(w_1g+\xi_1\xi_4)$
g	$\dot{\xi}_4$	$-\dot{\xi_3}$	$-\dot{\xi_2}$	$-\dot{\xi_1}$

SUSY transformations of (2,4,2)_{nlin} multiplet:

	Q_1	Q_2	Q_3	Q_4
z_1	$\eta_1 + rac{1}{r}(z_1\eta_3)$	$-\eta_2+rac{1}{r}(z_1\eta_4)$	$-\eta_3+rac{1}{r}(z_1\eta_1)$	$\eta_4+rac{1}{r}(z_1\eta_2)$
z_2	$\eta_2 + rac{1}{r}(z_2\eta_3)$	$\eta_1 + rac{1}{r}(z_2\eta_4)$	$-\eta_4+rac{1}{r}(z_2\eta_1)$	$-\eta_3+rac{1}{r}(z_2\eta_2)$
η_1	$\dot{z}_1 - rac{1}{r}(z_1h_1 + \eta_1\eta_3)$	$\dot{z}_2-rac{1}{r}(z_2h_1+\eta_1\eta_4)$	h_1	$-h_2-rac{1}{r}(\eta_1\eta_2)$
η_2	$\dot{z}_2 - rac{1}{r}(z_2h_1 + \eta_2\eta_3)$	$-\dot{z}_1+rac{1}{r}(z_1h_1-\eta_2\eta_4)$	$h_2 - rac{1}{r}(\eta_1\eta_2)$	h_1
η_3	h_1	$-h_2-rac{1}{r}(\eta_3\eta_4)$	$-\dot{z}_1+rac{1}{r}(z_1h_1+\eta_1\eta_3)$	$\left \begin{array}{c} -\dot{z}_2+rac{1}{r}(z_2h_1+\eta_2\eta_3) \end{array} ight $
η_4	$h_2 - rac{1}{r}(\eta_3\eta_4)$	h_1	$-\dot{z}_2+rac{1}{r}(z_2h_1+\eta_1\eta_4)$	$\dot{z}_1 - rac{1}{r}(z_1h_1 + \eta_2\eta_4)$
h_1	$\dot{\eta}_3$	$\dot{\eta}_4$	$\dot{\eta}_1$	$\dot{\eta}_2$
h_2	$\dot{\eta}_4 - rac{1}{r}(h_1\eta_4 - h_2\eta_3)$	$-\dot\eta_3+rac{1}{r}(h_1\eta_3+h_2\eta_4)$	$\dot{\eta}_2-rac{1}{r}(h_1\eta_2+h_2\eta_1)$	$\left -\dot{\eta}_1 + rac{1}{r}(h_1\eta_1+h_2\eta_2) ight $

A few comments are in order:

- The non-linearity of the $(3, 4, 1)_{nl}$ and $(2, 4, 2)_{nl}$ supertransformations is the mildest possible nonlinearity, since at most bilinear combinations of the component fields appear in the entries.

- The constant parameters R (entering $(3,4,1)_{nl}$) and r (entering $(2,4,2)_{nl}$) can be reabsorbed (set equal to 1) through a suitable rescaling of the component fields. It is however convenient to present them explicitly to show that in the contraction limit (for $R, r \to \infty$) the linear supermultiplets $(3,4,1)_{lin}$ and, respectively, $(2,4,2)_{lin}$ are recovered. As a consequence, $(3,4,1)_{nl}$ and $(2,4,2)_{nl}$ are more general than the corresponding linear supermultiplets with the same field content. Indeed, while the latter can be recovered from the non-linear ones, the converse is not true, as it will be clear from the discussion at the end of the next Section.

Invariant Supersymmetric Actions

The invariant action $S = \frac{1}{m} \int dt \mathcal{L}$ is expressed through the lagrangian \mathcal{L} s.t. $\mathcal{L} = Q_1 Q_2 Q_3 Q_4(F),$

where F is the unconstrained prepotential.

The invariant Lagrangian for (4,4) multiplet :

$$\mathcal{L}_{I} = \Phi(\dot{u_{1}}^{2} + \dot{u_{2}}^{2} + \dot{u_{3}}^{2} + \dot{u_{4}}^{2} - \psi_{1}\dot{\psi_{1}} - \psi_{2}\dot{\psi_{2}} - \psi_{3}\dot{\psi_{3}} - \psi_{4}\dot{\psi_{4}}) + \\ (\partial_{1}\Phi)(\dot{u_{2}}(\psi_{1}\psi_{2} + \psi_{3}\psi_{4}) + \dot{u_{3}}(\psi_{1}\psi_{3} - \psi_{2}\psi_{4}) + \dot{u_{4}}(\psi_{1}\psi_{4} + \psi_{2}\psi_{3})) + \\ (\partial_{2}\Phi)(-\dot{u_{1}}(\psi_{1}\psi_{2} + \psi_{3}\psi_{4}) + \dot{u_{3}}(\psi_{1}\psi_{4} + \psi_{2}\psi_{3}) - \dot{u_{4}}(\psi_{1}\psi_{3} - \psi_{2}\psi_{4})) + \\ (\partial_{3}\Phi)(-\dot{u_{1}}(\psi_{1}\psi_{3} - \psi_{2}\psi_{4}) - \dot{u_{2}}(\psi_{1}\psi_{4} + \psi_{2}\psi_{3}) - \dot{u_{4}}(\psi_{1}\psi_{2} + \psi_{3}\psi_{4})) + \\ (\partial_{4}\Phi)(-\dot{u_{1}}(\psi_{1}\psi_{4} + \psi_{2}\psi_{3}) + \dot{u_{2}}(\psi_{1}\psi_{3} - \psi_{2}\psi_{4}) - \dot{u_{3}}(\psi_{1}\psi_{2} + \psi_{3}\psi_{4})) + \\ (\Box\Phi)(\psi_{1}\psi_{2}\psi_{3}\psi_{4}),$$

Here the function Φ is determined in terms of the prepotential $F(u_i)$.

$$\Phi = \partial_1^2 F(u_1, u_2, u_3, u_4) + \partial_2^2 F(u_1, u_2, u_3, u_4) + \partial_3^2 F(u_1, u_2, u_3, u_4) + \partial_4^2 F(u_1, u_2, u_3, u_4) = \Box F(u_1, u_2, u_3, u_4).$$
(24)

For $(3,4,1)_{lin}$ the corresponding Lagrangian is given by

$$\mathcal{L}_{II} = \Phi(\dot{x_1}^2 + \dot{x_2}^2 + \dot{x_3}^2 + f^2 - \mu_1\dot{\mu_1} - \mu_2\dot{\mu_2} - \mu_3\dot{\mu_3} - \mu_4\dot{\mu_4}) + \\ (\partial_1\Phi)(\dot{x_2}(\mu_1\mu_2 + \mu_3\mu_4) + \dot{x_3}(\mu_1\mu_3 - \mu_2\mu_4) + f(\mu_1\mu_4 + \mu_2\mu_3)) + \\ (\partial_2\Phi)(-\dot{x_1}(\mu_1\mu_2 + \mu_3\mu_4) + \dot{x_3}(\mu_1\mu_4 + \mu_2\mu_3) - f(\mu_1\mu_3 - \mu_2\mu_4)) + \\ (\partial_3\Phi)(-\dot{x_1}(\mu_1\mu_3 - \mu_2\mu_4) - \dot{x_2}(\mu_1\mu_4 + \mu_2\mu_3) + f(\mu_1\mu_2 + \mu_3\mu_4)) + \\ (\Box\Phi)(\mu_1\mu_2\mu_3\mu_4).$$

where Φ is defined by

$$\Phi = \partial_1^2 F(x_1, x_2, x_3) + \partial_2^2 F(x_1, x_2, x_3) + \partial_3^2 F(x_1, x_2, x_3) = \Box F(x_1, x_2, x_3)$$

For $(3,4,1)_{nl}$ we construct the invariant action in terms of prepotential $F(\rho)$ that can be expressed as a function of coordinate ρ

$$ho ~=~ \sqrt{w_1^2+w_2^2+w_3^2}.$$

The function $A(\rho)$ entering the Lagrangian

$$A(\rho) = \frac{d}{d\rho}F(\rho) \equiv F'$$

$$\begin{split} \mathcal{L}_{III} &= \left[\frac{2}{\rho}A + A'\right] (\dot{w}_{1}^{2} + \dot{w}_{2}^{2} + \dot{w}_{3}^{2} + g^{2} - \xi_{1}\dot{\xi}_{1} - \xi_{2}\dot{\xi}_{2} - \xi_{3}\dot{\xi}_{3} - \xi_{4}\dot{\xi}_{4}) + \\ &\quad \frac{1}{\rho} \Big[\frac{2}{\rho^{2}}A - \frac{2}{\rho}A' - A''\Big] \Big[\dot{w}_{1} \Big(w_{2}(\xi_{1}\xi_{2} + \xi_{3}\xi_{4}) + w_{3}(\xi_{1}\xi_{3} - \xi_{2}\xi_{4}) + w_{2}(\xi_{1}\xi_{4} + \xi_{2}\xi_{3})\Big) - \\ &\quad -\dot{w}_{2} \Big(w_{1}(\xi_{1}\xi_{2} + \xi_{3}\xi_{4}) - w_{3}(\xi_{1}\xi_{4} + \xi_{2}\xi_{3}) - \dot{w}_{3}\Big(w_{1}(\xi_{1}\xi_{3} - \xi_{2}\xi_{4}) + w_{2}(\xi_{1}\xi_{4} + \xi_{2}\xi_{3})\Big) - \\ &\quad -g \Big(w_{1}\Big(\xi_{1}\xi_{4} + \xi_{3}\xi_{4}\Big) - w_{2}\Big(\xi_{1}\xi_{3} - \xi_{2}\xi_{4}\Big) + w_{3}(\xi_{1}\xi_{2} + \xi_{3}\xi_{4})\Big)\Big] + \Big[\frac{4}{\rho}A'' + A'''\Big]\xi_{1}\xi_{2}\xi_{3}\xi_{4} + \\ &\quad \frac{1}{R}\Big\{-\Big[\frac{2}{\rho}A + A'\Big](w_{1}\dot{w}_{1} + w_{2}\dot{w}_{2} + w_{3}\dot{w}_{3}\Big)g - \Big[\frac{4}{\rho}A + 4A' + \rhoA''\Big] \cdot \\ &\quad \cdot\Big(\dot{w}_{1}(\xi_{1}\xi_{4} + \xi_{2}\xi_{3}) - \dot{w}_{2}(\xi_{1}\xi_{3} - \xi_{2}\xi_{4}) + \dot{w}_{3}(\xi_{1}\xi_{2} + \xi_{3}\xi_{4})\Big)\Big\} + \\ &\quad \frac{1}{R^{2}}\Big\{\rho\Big[2A + \rho A'\Big](\dot{w}_{1}^{2} + \dot{w}_{2}^{2} + \dot{w}_{3}^{2} + 2g^{2} - \xi_{1}\dot{\xi}_{1} - \xi_{2}\dot{\xi}_{2} - \xi_{3}\dot{\xi}_{3} - \xi_{4}\dot{\xi}_{4}\Big) - \Big[\frac{4}{\rho}A + 4A' + \rho A''\Big] \cdot \\ &\quad \cdot\Big[\dot{w}_{1}\Big(w_{2}(\xi_{1}\xi_{2} + \xi_{3}\xi_{4}) + w_{3}(\xi_{1}\xi_{3} - \xi_{2}\xi_{4})\Big) - \dot{w}_{2}\Big(w_{1}(\xi_{1}\xi_{2} + \xi_{3}\xi_{4}) - \\ &\quad -w_{3}(\xi_{1}\xi_{4} + \xi_{2}\xi_{3})\Big) - \dot{w}_{3}\Big(w_{1}(\xi_{1}\xi_{3} - \xi_{2}\xi_{4}) + w_{2}(\xi_{1}\xi_{4} + \xi_{2}\xi_{3})\Big) + \\ &\quad -w_{3}(\xi_{1}\xi_{4} + \xi_{2}\xi_{3}) - \dot{w}_{3}\Big(w_{1}(\xi_{1}\xi_{3} - \xi_{2}\xi_{4}) + w_{3}(\xi_{1}\xi_{2} + \xi_{3}\xi_{4})\Big)\Big] + \\ &\quad 2g^{2}\Big(w_{1}(\xi_{1}\xi_{4} + \xi_{2}\xi_{3}) - w_{2}(\xi_{1}\xi_{3} - \xi_{2}\xi_{4}) + w_{3}(\xi_{1}\xi_{2} + \xi_{3}\xi_{4})\Big)\Big] + \\ &\quad 2g^{2}\Big(w_{1}(\xi_{1}\xi_{4} + \xi_{2}\xi_{3}) - \dot{w}_{2}(\xi_{1}\xi_{3} - \xi_{2}\xi_{4}) + w_{3}(\xi_{1}\xi_{2} + \xi_{3}\xi_{4})\Big)\Big] + \\ &\quad \frac{1}{R^{3}}\Big\{2\rho\Big[2A - \rho A'\Big](w_{1}\dot{w}_{1} + w_{2}\dot{w}_{2} + w_{3}\dot{w}_{3}\Big)g - \rho\Big[6A - 6\rho A' - \rho^{2}A''\Big] \cdot \\ &\quad \cdot\Big(\dot{w}_{1}(\xi_{1}\xi_{4} + \xi_{2}\xi_{3}) - \dot{w}_{2}(\xi_{1}\xi_{3} - \xi_{2}\xi_{4}) + \dot{w}_{3}(\xi_{1}\xi_{2} + \xi_{3}\xi_{4})\Big)\Big\} + \\ &\quad \frac{1}{R^{4}}\Big\{\rho^{3}\Big[2A + \rho A'\Big]g^{2} + \rho\Big[6A + 6\rho A' + \rho^{2}A''\Big]\Big(w_{1}(\xi_{1}\xi_{4} + \xi_{2}\xi_{3}) - w_{2}(\xi_{1}\xi_{3} - \xi_{2}\xi_{4}) + \\ &\quad w_{3}(\xi_{1}\xi_{$$

Prepotentials and their associated sigma-models.

The associated sigma-models are constructed by

- consistently setting equal to zero all the fermionic fields in the supermultiplets;
- solving the algebraic equations of motion for the auxiliary fields;
- re-expressing the resulting lagrangians as $L = g_{ij} \dot{X}^i \dot{X}^j$

In our case the metric g_{ij} is obtained from prepotential **F**.

For the $(3,4,1)_{nl}$ multiplet with prepotential $F(\rho)$ the metric is diagonalized when expressed in terms of the redefined target coordinates.

$$\omega_{1} = \rho \cos(\theta_{1}) \sin(\theta_{2})$$
$$\omega_{2} = \rho \sin(\theta_{1}) \sin(\theta_{2})$$
$$\omega_{3} = \rho \cos(\theta_{2})$$

The nonvanishing components of the metric are

$$g_{\rho\rho} = \frac{4(\rho^{2}+1)}{\rho} [\rho F''(\rho) + F'(\rho)],$$

$$g_{\theta_{1}\theta_{1}} = \rho(\rho^{2}+1) \sin(\theta_{2}) [\rho F''(\rho) + F'(\rho)],$$

$$g_{\theta_{2}\theta_{2}} = \rho(\rho^{2}+1) [\rho F''(\rho) + F'(\rho)]$$

SOME OPEN PROBLEMS AND FUTURE INVESTIGATIONS

- Supersymmetrie extension on 2nd and 3d Hopf maps
- Stereographic projection is not covariant with respect to U(1). Sperical coordinates.
- Make the fiber local (gauge field).
- Classification of SUSY nonlinear.

Thank you for the attention.