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Geometry of second order operators

2-nd order operators

First order operator (on functions)

L = T a(x)∂a + R(x) ,

(
∂a↔

∂

∂xa

)
Change of coordinates xa = xa(xa ′)

∂a = xa ′
a ∂a ′ ,

(
xa ′

a =
∂xa ′

∂xa

)

L = T a(x)∂a + R(x) = T a(x)xa ′
a︸ ︷︷ ︸

T a ′

∂a ′ + R(x)

L = T a(x)∂a︸ ︷︷ ︸
vector field

+ R(x)︸ ︷︷ ︸
scalar
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Geometry of second order operators

2-nd order operators

Second order operator (on functions)

∆ =
1
2

Sab(x)∂a∂b + T a(x)∂a + R(x) ,

Change of coordinates xa = xa(xa ′)

∆ =
1
2

Sab(x)∂a∂b + · · ·= 1
2

xa ′
a Sabxb ′

b︸ ︷︷ ︸
Sa ′b ′

∂a ′∂b ′ + . . .

Sab defines symmetric contravariant tensor of rank 2 on M.

Quadratic polynomial H∆ = 1
2 Sabpapb on T ∗M is the principal symbol of the

operator ∆ = 1
2 ∂aSab(x)∂b + . . . . (Linear polynomial HL = T apa on T ∗M is

the principal symbol of the operator L = T a∂a + . . . .)
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Geometry of second order operators

2-nd order operators

∆ =
1
2

Sab(x)∂a∂b︸ ︷︷ ︸
top component

+T a(x)∂a + R(x) (1)

The top component
symmetric tensor field Sab∂a⊗∂b on M.

If S ≡ 0 then ∆ becomes first order operator
T a∂a is vector field.

What about the geometrical meaning of the term T a∂a if S 6= 0?

To study this question consider the difference

∆+−∆ ,

where ∆+ is defined via a scalar product

〈∆f ,g〉= 〈f ,∆+g〉 .
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Geometry of second order operators

2-nd order operators

Scalar product and volume form

〈f ,g〉ρ =
∫

M
f (x)g(x)ρ(x)Dx , ρ(x)Dx is a volume form .

ρ(x)Dx = ρ(x(x
′
))

∣∣∣∣ Dx
Dx ′

∣∣∣∣Dx
′
= ρ(x(x

′
))det

(
∂xa

∂xa ′

)
Dx

′

〈∆f ,g〉ρ =
∫

M
∆(f (x))g(x)ρ(x)Dx

=
∫

M
f (x)∆+ (g(x))ρ(x)Dx = 〈f ,∆+g〉ρ .
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Geometry of second order operators

2-nd order operators

By integrating by parts we have

〈∆f ,g〉ρ =
∫

M

(
1
2

Sab(x)∂a∂bf + T a(x)∂af + R(x)f
)

︸ ︷︷ ︸
∆f

g(x)ρ(x)Dx =

∫
M

f (x)

(
1

2ρ
∂a

(
∂b

(
Sab

ρg
))
− 1

ρ
∂a
(
T a

ρg
)

+ Rg
)

︸ ︷︷ ︸
∆

+ g

ρ(x)Dx = 〈f ,∆+g〉ρ .

∆+−∆ =
(

∂bSab−2T a + Sab
∂b logρ

)
∂a︸ ︷︷ ︸

vector field

+ . . .

Claim: for an operator ∆ = Sab∂a∂b + T a∂a + R, the expression
γa = ∂bSab−2T a , is an (upper) connection on volume forms.
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Geometry of second order operators

Connection on volume forms

Connection on volume forms
Connection ∇ on volume forms defines covariant derivative

∇a (ρDx) = (∂a + γa)ρ(x)Dx , γaDx = ∇a (Dx) .

Transformation of the symbol γa(x): xa = xa(xa ′)

γaDx = xa ′
a ∇a ′

(
det

∂x
∂x ′Dx ′

)
= xa ′

a

(
∂a ′

(
logdet

∂x
∂x ′

)
+ γa ′

)
Dx

γa = xa ′
a γa ′−xb

b ′x
b ′
ba .

The difference of two connections is a vector field:

γ
′

a− γa = vector field
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Geometry of second order operators

Connection on volume forms

Examples of connections

Example (Connection defined by a chosen volume form)
Let ρ

(0)
(x)Dx be a non-vanishing volume form. Define:

∇
(0)
a (ρ(x)Dx) = ∂a

(
ρDx

ρ
(0)

Dx

)
ρ

(0)
Dx = (∂aρ(x)−∂a logρ(0)(x))ρ

(0)
Dx ,

γ
(0)
a =−∂a logρ

(0)
(x)

∇
(0)
a

(
ρ

(0)
(x)Dx

)
≡ 0 .

It is the connection induced by a volume form
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Geometry of second order operators

Connection on volume forms

Example (Connection defined by a Riemannian structure)
Let M be Riemannian manifold with metric gabdxadxb.

ρ(g)(x)Dx =
√

detgDx , (canonical volume form)

γ
(g)
a =−∂a logρ(g)(x) =−1

2
∂a logdetg =−1

2
gbc

∂agbc =−Γb
ab ,

where Γa
bc are the Christoffel symbols of the Levi-Civita

connection.
Here connection on volume forms is the trace of Christoffel
symbols.

Volume form connection γa =−∂a logρ is a flat connection: its
curvature vanishes

fab = ∂aγb−∂bγa =−∂a∂b logρ + ∂b∂a logρ = 0 .
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Geometry of second order operators

Divergence operator

Connection on volume forms and divergence

If ∇ is a connection on volume forms ∇aρDx = (∂a + γa)ρ(x)Dx
then one can define a divergence operator on vector fields:

For X = X a
∂a, divγ X = ∂aX a− γaX a .

If the connection ∇ is induced by a volume form ρ(x)Dx

γ
(ρ)
a =−∂a logρa, then

div
γ(ρ)X = ∂aX a− γ

(ρ)
a X a = ∂aX a + X a

∂a logρ(x) =
LXρDx

ρDx
.

If ρ(x)Dx =
√

detgDx is the canonical volume form on a
Riemannian manifold, then divX = (∂b + Γa

ab)X b.
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Geometry of second order operators

Divergence operator

Returning to operators
For operator ∆ = 1

2Sab∂a∂b + T a∂a + R we consider adjoint
operator ∆+ with respect to the scalar product induced by a
volume form ρ(x)Dx .

∆+−∆ =
(

∂bSab−2T a + Sab
∂b logρ

)
︸ ︷︷ ︸

vector field

∂a + . . .

Consider the flat connection γ
(ρ)
a =−∂a logρ induced by a

volume form ρ(x)Dx . We obtain

∂bSab−2T a = vector field−Sab
∂b logρ = vector field + Sab

γ
(ρ)
b

∂bSab−2T a = vector field + γ
a(ρ) = γ

a upper connection



Geometry of second order operators and

Geometry of second order operators

Divergence operator

Returning to operators
For operator ∆ = 1

2Sab∂a∂b + T a∂a + R we consider adjoint
operator ∆+ with respect to the scalar product induced by a
volume form ρ(x)Dx .

∆+−∆ =
(

∂bSab−2T a + Sab
∂b logρ

)
︸ ︷︷ ︸

vector field

∂a + . . .

Consider the flat connection γ
(ρ)
a =−∂a logρ induced by a

volume form ρ(x)Dx . We obtain

∂bSab−2T a = vector field−Sab
∂b logρ = vector field + Sab

γ
(ρ)
b

∂bSab−2T a = vector field + γ
a(ρ) = γ

a upper connection



Geometry of second order operators and

Geometry of second order operators

Divergence operator

Returning to operators
For operator ∆ = 1

2Sab∂a∂b + T a∂a + R we consider adjoint
operator ∆+ with respect to the scalar product induced by a
volume form ρ(x)Dx .

∆+−∆ =
(

∂bSab−2T a + Sab
∂b logρ

)
︸ ︷︷ ︸

vector field

∂a + . . .

Consider the flat connection γ
(ρ)
a =−∂a logρ induced by a

volume form ρ(x)Dx . We obtain

∂bSab−2T a = vector field−Sab
∂b logρ = vector field + Sab

γ
(ρ)
b

∂bSab−2T a = vector field + γ
a(ρ) = γ

a upper connection



Geometry of second order operators and

Geometry of second order operators

2-nd order operator=Symmetric tensor+Connection

Geometry of second order operator (on functions)

∂bSab−2T a = γ
a upper connection on volume forms

∆ =
1
2

Sab
∂a∂bf +T a

∂a +R =
1
2

Sab
∂a∂b +

1
2

(
∂bSba− γ

a
)

∂a +R ,

∆f =
1
2

∂a

 Sab︸︷︷︸
tensor

∂bf

− 1
2

γ
a︸︷︷︸

connection

∂af + R︸︷︷︸
scalar

f ,

Upper connection γa on volume forms defines contravariant derivative:

∇
a (ρ(x)Dx) =

(
Sab

∂b + γ
a
)

ρDx .

If γa is connection on volume form then γa = Sabγb is upper connection.
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Geometry of second order operators

2-nd order operator=Symmetric tensor+Connection

Geometry of second order operator (on functions)

∂bSab−2T a = γ
a upper connection on volume forms

∆ =
1
2

Sab
∂a∂bf +T a

∂a +R =
1
2

Sab
∂a∂b +

1
2

(
∂bSba− γ

a
)
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1
2
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γ
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f ,
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Sab

∂b + γ
a
)
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Geometry of second order operators

2-nd order operator=Symmetric tensor+Connection

Example: Laplace-Beltrami operator

Fix a volume form ρ(x)Dx and consider the induced flat
connection γa =−∂a logρ. Fix scalar R = 0. Then

∆ =
1
2

∂a

(
Sab

∂b

)
− 1

2
γ

a
∂a + R =

1
2

∂a

(
Sab

∂b

)
+

1
2

Sab
∂b logρ∂a =

1
2

1
ρ

∂a

(
ρSab

∂b

)
.

In the Riemannian case Sab = gab and ρ(x) =
√

detg.
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Geometry of second order operators

Algebra of densities

Algebra of densities
Under a change of coordinates a density of weight σ is
multiplied by the σ -th power of the Jacobian of the coordinate
transformation:

s(x)|Dx |σ = s(x(x
′
))

∣∣∣∣ Dx
Dx ′

∣∣∣∣σ |Dx
′ |σ = s(x(x

′
))

(
det
(

∂x
∂x ′

))σ

|Dx
′ |σ .

Density of weight σ = 0 is a usual scalar function.
Density of weight σ = 1 is a volume form.
Wave function Ψ is a density of weight σ = 1

2 (semi-density).
Product of two densities:

s1(x)|Dx |σ1 ·s2(x)|Dx |σ2 = s ′(x)|Dx |σ1+σ2 .
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Geometry of second order operators

Algebra of densities

Canonical scalar product of densities

Definition

〈s1(x)|Dx |σ1 ,s2(x)|Dx |σ2〉=
∫

M
s1(x)s2(x)Dx , if σ1 +σ2 = 1 ,

〈s1(x)|Dx |σ1 ,s2(x)|Dx |σ2〉= 0 if σ1 + σ2 6= 1

Symbolic notation:
s(x)|Dx |σ ↔ s(x)tσ . Density a(x , t) = ∑ak tσk

〈a(x , t),b(x , t)〉=
∫

M
Res

(
a(x , t)b(x , t)

t2

)
Dx .
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Geometry of second order operators

Algebra of densities

Differential operators on densities

Differential operators D = D(x , t , ∂

∂x , d
dt ) act on densities

a(x , t) = ∑ak (x)tσk , (tσ ↔ |Dx |σ ).
Examples
Weight operator: σ̂ = t d

dt . t d
dt (a(x)tσ ) = σa(x)tσ .

Lie derivative:
LX = X a ∂

∂xa +
∂X a

∂xa t
d
dt

LX (a(x)|Dx |σ ) =

(
X a ∂a(x)

∂xa + σ
∂X a

∂xa a(x)

)
|Dx |σ , .

Examples of adjoints

∂
+
a =−∂a, t+ = t ,

(
d
dt

)+
=− d

dt + 2
t , σ̂+ = 1− σ̂ .
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Geometry of second order operators

Second order self-adjoint operators on the algebra of densities and the canonical operator pencils

Second order operator on the density algebra

Contravariant tensor Sab,
upper connection γa ←→

Second order self-adjoint
operator on algebra of
densities

(H.Kh., T.Voronov 2003)

∆a(x , t) = ∆+a(x , t) =

1
2

(
∂aSab

∂b + (2σ̂ −1)γ
a
∂a + σ̂∂aγ

a + σ̂(σ̂ −1)θ

)
a(x , t) .

Here θ = γaSabγb = γaγa (in the case if Sab is invertible).

In the general case θ is an object such that for an arbitrary connection γ ′a
θ − γ ′aSabγ ′b−2∂a(γa−Sabγ ′b) is a scalar. It is a Brans-Dicke type
”scalar”.
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Geometry of second order operators

Second order self-adjoint operators on the algebra of densities and the canonical operator pencils

Canonical pencil of operators
Restricting the operator ∆ on densities of weight σ we arrive at
the operator pencil ∆σ ,

∆σ (a(x)|Dx |σ ) =

1
2

(
∂aSab

∂b + (2σ −1)γ
a
∂a + σ∂aγ

a + σ(σ −1)θ

)
a(x)|Dx |σ ,

σ ∈ R.

Theorem (”Universality” property)
Let L be an arbitrary second order operator acting on densities
of the weight σ . If σ 6= 0, 1

2 ,1 then there exists a unique
canonical pencil which passes through the operator L, L = ∆σ .
(H.Kh., T.Voronov)
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Second order operator on semidensitites and Batalin-Vilkovisky groupoid of connections

Special case: operators on semidensities, σ = 1
2.

Fix Sab. Choose an arbitrary connection γa. Consider the
canonical pencil at σ = 1

2 .

∆
γ

1
2

(
a(x)

√
|Dx |

)
=

1
2

(
∂a

(
Sab

∂ba(x)
)

+
∂aγa

2
a(x)− γaγa

4
a(x)

)√
|Dx | .

How this operator changes if we change the connection γ?

γ→ γ
′= γ +X, ∆

γ

1
2
→∆

γ ′

1
2

= ∆
γ

1
2

+
1
4

∂aX a− 1
8
(
2γaX a + XaX a)=

∆
γ

1
2

+
1
4
(
∂aX a− γaX a)− 1

8
X2 = ∆

γ

1
2

+
1
4

(
div γX− 1

2
X2
)

.

∆
γ

1
2

= ∆
γ ′

1
2

⇔ div γX− 1
2

X2 = 0 .
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Second order operator on semidensitites and Batalin-Vilkovisky groupoid of connections

Groupoid of connections
Let A be an affine space of all connections on volume forms.
Arrow: γ

X−→γ ′ such that γ,γ ′ ∈ A and γ ′ = γ + X.

Set S of admissible arrows: S = {γ X−→γ
′ : div γX− 1

2
X2 = 0}

Inverse arrow: If γ
X−→γ ′ ∈ S then γ ′

−X−→γ ∈ S.
(If div γ X− 1

2 X2 = 0 then −div γ+XX− 1
2 X2 = 0).

Multiplication of arrows: if γ1
X−→γ2, γ2

Y−→γ3 ∈ S then
γ1

X+Y−→γ3 ∈ S.

(if div γ1 X− 1
2

X2 = div γ2 Y− 1
2

Y2 = 0 then div γ1 (X + Y)− 1
2

(X + Y)2 = 0 .)

We call this groupoid the Batalin-Vilkovisky groupoid.
(H.Kh., T. Voronov.)
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Second order operator on semidensitites and Batalin-Vilkovisky groupoid of connections

Conclusion

Operator ∆
γ

1
2

depends not on a connection but only on its
equivalence class, the groupoid orbit Oγ of a connection γ,

Oγ = {γ ′ : γ
X−→ γ

′ ∈ S}.

∆
γ

1
2

= ∆
γ ′

1
2

⇔ div γX− 1
2

X2 = 0 .

Where such operators naturally arise?
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∆-operator on odd symplectic supermanifolds

Consider a supermanifold M with coordinates
zA = { xa︸︷︷︸

even
, θ

α︸︷︷︸
odd

}. Let SAB be a (super)symmetric contravariant

tensor on M:
SAB = SBA(−1)p(A)p(B) .

It defines ∆ = SAB∂A∂B + . . . .
Suppose SAB is invertible.
1-st case . SAB is an even tensor: p(SAB) = p(A) + p(B).
SAB = gAB defines an even Riemannian structure.
There exists the canonical volume form and the canonical flat
connection on volume forms:

ρ(z)|Dz|=
√

BergAB, γA =−∂A logρ(z) .

Moreover there exists the unique Levi-Civita connection ΓA
BC

and
γA =−∂A logρ(z)|Dz|=−(−1)BΓB

BA .
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∆-operator on odd symplectic supermanifolds

2-nd case . SAB is an odd tensor: p(SAB) = 1 + p(A) + p(B).
SAB = ΩAB defines an odd symplectic structure 1:
{zA,zB}= (−1)AΩAB.

There are no canonical volume form (no Liouville Theorem!)
and no canonical flat connection on volume forms.
There are many affine connections compatible with the
symplectic structure. One cannot choose a unique ”Levi-Civita”
connection ΓA

BC .

One cannot choose a distinguished connection on volume
forms.

Can we choose a class of connections?

1We need to impose the additional condition (ΩABπAπB ,ΩABπAπB) = 0
where (,) is a canonical Poisson bracket on the cotangent bundle T ∗M,
providing the Jacobi identity for the odd bracket {f ,g}= (f ,(ΩABπAπB ,g)).
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∆-operator on odd symplectic supermanifolds

Canonical class of connections
Definition
We say that γA is a Darboux flat connection if there exist
Darboux coordinates such that γA ≡ 0 in these Darboux
coordinates.

Theorem
All Darboux flat connections belong to the same orbit of the
Batalin-Vilkovisky groupoid. That means that for two Darboux
flat connections γ1,γ2

γ1
X−→γ2 ∈ S, i.e. divX− 1

2
X2 = 0 ,

(I.A.Batalin, G.A.Vilkovisky 2—H.Kh.—H.Kh.,T.Voronov)
2The statement relies on the Batalin-Vilkovisky identity:

ΩAB∂A∂B

√
Ber

(
∂zA

∂zA ′

)
= 0 for Darboux coordinates zA,zA ′ .
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∆-operator on odd symplectic supermanifolds

Example. Canonical ∆-operator on semidensitites

Let γ be an arbitrary Darboux flat connection and {zA} be
arbitrary Darboux coordinates. Then

∆
Oγ

1
2

(
a(z)

√
|Dz|

)
=

1
2

(
∂A

(
ΩAB

∂Ba(z)
)

+
∂AγA

2
a(z)− γAγA

4
a(z)

)√
|Dz|

=
1
2

ΩBA
∂A∂Ba(z)

√
|Dz|,

since ΩBA is a constant tensor in Darboux coordinates and
according to Theorem above, ∂AγA

2 −
γAγA

4 = 0 for an arbitrary
Darboux flat connection.
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∆-operator on odd symplectic supermanifolds
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Invariant density on surfaces in odd symplectic sumpermanifold

Analogue of mean curvature for an odd symplectic
structure.

Let M be an odd symplectic supermanifold equipped with a
volume form ρ(z)|Dz|.
Let C be a surface of codimension (1|1) in M and Ψ(z) be an
odd vector field which is symplectoorthogonal to the surface M.
Consider

A(∇,Ψ) = Tr(Π(∇Ψ))−div ρ Ψ ,

where Π is the projector on (1|1)-dimensional plane
symplectoorthogonal to the surface C, and ∇ is an arbitrary
affine connection on M. (H.Kh., O. Little)

In the even Riemannian case (surface of codimension (1|0))
one can take the canonical Levi-Civita connection ∇LC and the
Riemannian volume form. Then

A(∇LC ,Ψ) = |Ψ| ·mean curvature of the surface C .
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Invariant density on surfaces in odd symplectic sumpermanifold

In the odd symplectic case there is no preferred affine
connection compatible with the symplectic structure.
Consider the class of Darboux flat affine connections.
(Connection is Darboux flat if there exist Darboux coordinates such that
Christoffel symbols ΓA

BC ≡ 0 in these Darboux coordinates)

Theorem
The magnitude A(∇,Ψ) does not depend on a connection in the
class of Darboux flat connections:

A(∇,Ψ) = A(∇
′,Ψ)

for two arbitrary Darboux flat connections ∇ and ∇ ′.

This construction reveals the geometrical meaning of odd
invariant semidensity obtained in 1984 (H.Kh., R.Mkrtchyan).
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