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Notion of Faddeev’s modular double

Consider standard Heisenberg algebra (HA) generated by operators
X, p
[X7 p] =1.

Introduce the algebra T (quantum torus) with generators U, V
iax i
U=¢e>, V=g,
(a, B are parameters) with commutation relations

UV=qVU qg=¢e"'".

Is the algebra T of quantum torus (in above realization) is "equivalent”
(representation theories are identical) to the Heisenberg algebra?
The answer is NO!
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Notion of Faddeev’s modular double

Indeed, one can construct another "dual” algebra T of quantum torus
U=e™ V=¢ér.
Uuv=gVvu, g=e'%,
with another parameters &, 3. Then, if | & = %”, B=-2 | the

generators U, V of T commute with generators U V of T and
deformation parameters g and g are related by modular transformation

; ; - _iaB _ier . 1
g=e' =% _, ='W =g % (r - 7=—-).
-

The double of algebras T and T is called modular double.

The modular double of T and T is "equivalent to HA”!
The notion of the modular double was introduced by L.D.Faddeev for
the case of Uy(s/(2)) (1995-1999).
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Notion of Faddeev’s modular double

Let x be a coordinate and p be a momentum of a free particle. The
evolution of this particle with evolution operator ©(t) = exp(5p? t):
p—ot)pet)'=p, x—-0()xO0(t)"=x+pt.

For coordinates U, V of quantum torus T, we obtain the evolution
Voemvem =V, Uoenuer ' =UePes

and for special interval t = g = —g we obtain discrete evolution on T
VooW)VeW) =V, U-eWV)UeV) '=UVqg:,

where we denote ©(V) =

(g) This leads to the equation on ©(V)
o(V) = gz ©(gV) V
which can be solved in terms of the Jacobi theta-function (|g| < 1
o0
n= 1 n:1
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Notion of Faddeev’s modular double

How can one relate evolution operator ©(t) = exp(%pz t) and evolution
operators

O(V,q) = IIn24 (1 + " 2V) IR (1 + "2V ),
O(V,q) =TI (1 + a2V [T, (1 + 12V ),

which are "compact” evolution operators for dual quantum torus T and
T, respectively?
The answer is given by known identity for theta-functions

i 2ﬂ>w@(V,q)
exp<2p o) T ey

Below we obtain these formulas in the context of a discrete evolution of
the SL4(2)- quantum top model introduced by Faddeev and Alekseev.
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Let V be a finite dimensional C-linear space. For any operator
X € End(V ® V) and integers i > 0, j > 0 we denote

Xiip1 = 1P @ X @ PU1) ¢ End(VE(H)) |
where | € Aut(V) is the identity operator.

Def 1. An operator R € Aut(V ® V) is called an R-matrix if

Dt Dkeis ke _ Dibls  Ditke RNoks
R/ﬁ Ko anja R fik szka R/1 Ny R fof3 |

These braid relations can be written in concise matrix form:
Ri2 Roz Ri2 = Roz Ry2 Ao

Def 2. An R-matrix R is called a Hecke type R-matrix if

(R—q1)(R+q '1)=0, (1=Ix]).




1. R-matrices

Consider the set of antisymmetrizers A%)(q) which can be defined by
recurrent relations:

Kk
ity _ _Kla 4 (9 ) o(k+1)
A Fr <[k]q By ) A® ¢ End(V ).

Def 3. A Hecke type R-matrix R for g — generic is called GLq(n) type
R-matrix if it satisfies

n ~
1) A —0 o A(n)(%/ _ Rn>A(”) =0, 2) rk(AM) =1
q

v

An example of GL4(n) type R-matrix is the standard Drinfeld-Jimbo’s
R-matrix

quE,,®E,,+ 9-97")) Ei®E,
ij=1 i<j

where (Ej)x := 0jxdj are (n x n) matrix units.
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Def 4. R is called skew invertible if 3V € End(V®?) such that

DM yirkels  _ \piime Dkols iy sh
R W =V R™% = 4§

ke T moj3 ke " "mojs B h

With any skew invertible R we associate matrix D € End(V):

Dy =TrpVq2,

where Ty;) — trace in i-th space. Then, we define a quantum trace

(g-traces) for any quantum matrix Y

Y —Tr(Y)=Tr(DY),
which possesses many remarkable properties, e.g.,
Try o) (R Y1 Bip) = I Trp(Y) (e = £1),

Tr ([ﬁi’mh Y(1A..k)]> =0 (V1 <i<k,VYi.n)-
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3. RTT and Reflection equation (RE) algebras

Quantized functions over matrix group (RTT algebra)
(L.Faddeev,N.Reshetikhin,L.Takhtajan (1989)).

Let R be a skew invertible R-matrix. Consider an associative unital
algebra generated by matrix components || T’Hd'm Y which satisfy

ReTiTo=Ti TRz

The extension of this algebra by a set of components ||(T~ ) ||dlm v

S TT = ST = 61
k

k

is a Hopf algebra with coproduct, counit and antipode mappings:
=Y TeTf  «(T)=¢. S(T))= (T

k
This algebra is called an RTT algebra and denoted by F[R].
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Def 5. Let R be a skew invertible R-matrix. An associative unital
algebra £[R] with generators IL}|¢mY satisfying relations

LiRio Ly Riz = Ria Ly Ria Ly

is called a reflection equation (RE) algebra.

Consider REA L[R] for Hecke type R and introduce elements (ay = 1)

ai=Tryq. iy (ADLg... L), pi=Tr, (L) (i>1)

where Lt := Ly, L := R Lz R,". Elements p; and g; are central
and called power sums and e/ementary symmetric functions, resp.
Prop. 1. Quantum Newton relations and g- Cayley-Hamilton identity

g @i + (—1)"2;;2)(—67)@/!?/7/ =0 Vi>1,
Sio(—qYaLl =0.
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Prop. 2 The set of elementary symmetric functions {a;, j =1,...,n}
generate the whole center in REA L[Ray(n)-

Def 5. A spectral extension of REA L[R] for GL4(n) type R-matrix is
the extension of £[R] by a set of invertible central elements s,
(e =1,...,n) such that .

[MDH le] =0

and

aj = 3 Wiy - - -ty Vi=1,...,n.
1< <<ji<n

v

It means that the Cayley-Hamilton identity can be written in factorized
form

o (=aqY gL =TI0_4(L - qual) =0.
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4. Heisenberg double of RTT and RE algebras

Def 6. A Heisenberg double (HD) algebra of the RTT and RE algebras
is an associative unital algebra generated by elements Tj’ eF [IA:?] and

L]’Z € L[R] subject to commutation relations

ReTiTo=Ti TRz

Ly RiaLy Ryz = Rip Ly Rip Ly

/72 Ti L, = §12 L+ //?12 Tq, (’)/ € {C\O})

This algebra is a quantization of the Poisson structure on T*(GL(n)):
{T/, T} =0, {{, tn} =2(60,65—0{Cr), {4, T} =6 Th.

0 13/22



4. Heisenberg double of RTT and RE algebras

T =T, U—d+hti+..., Rl —ohol+hodh+....

HD algebra is interpreted as quantum group
cotangent bundle, where RTT algebra is a base and

RE algebra is a bundle.

For the spectral extension of HD we have additional
commutators of Tj’ and L; with spectral elements {1}

[:uom L/I] =0, [Nou le] —
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5. Discrete time evolution on quantum group

cotangent bundle

Consider sequence of automorphisms on the HD (F # £)[R]

(T, Ly % (T(k), LK)}, Yk=0,1,2,... J

Rz Ty (K) Ta(k) = Ti(k) Ta(k)Riz
ﬁ?12 L1(k)ﬁ?12 L1(k) = L1(k) ﬁf12 L1(k)'E?12a
+2 Ti(k) La(K) = Riz Li(K) Ry2 Ty(K).

Here k is a discrete time. For any R-matrix these automorphisms can
be realized as (Faddeev—Alekseev discrete time evolution for the
quantum top)

T(k)=LKT, L(k)=L. |
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5. Discrete time evolution for SL4(n) case

Consider the case when RTT algebra is SLy(n) quantum group. In this
case we require

.....

Discrete time evolution must conserve this relation, i.e., we have
detq(LX T) = 1 (Vk > 0). This leads to the conditions

We will investigate the discrete evolution for HD of SLy(N) type. The
key point is that 3 the special evolution operator ©:

Tk+1)=LT(k =0Tk ', Lk+1)=0LKO '=L.

For the case of "ribbon Hopf algebra” the Faddeev-Alekseev evolution
is given by © = ribbon element.
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6. Evolution operator © for SL,(n) case.

Thus, we have for the first shift k = 1:
LT=0T6 ', L=06L67", (1)

and we assume © = O(uy1, ..., un), where [[7_, uo = g~ 1.

For the HD with R-matrix of the SLq4(n)-type the evolution operator
©(ua) Is a solution of egs. (1) which are written as

@(Va(iuﬁ)) :q_1/L;1 e(#ﬁ) Va=1,...,n, (2)

where V' are finite shift operators V(ug) = q?*=# uz and the matrix
X is a Gram matrix

S =k 1
Xag = <ea,eﬁ> = 5a5 — E (a,ﬁ:1,...,n),

for the set of vectors: 8 = 1 (—1,....,—1,n—1,-1,...,-1).
—_——

(a—1) times
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As a result we obtain (special solution):
Proposition. In case |q| < 1 a solution is expressed via
multidimensional theta-function

0M(ua) = 0(5.Q) = Y exp {m(k} QK) + 2ni (K, 5)}7
kez"!
where T is a modular parameter, Q2 is (n — 1) x (n— 1) matrix of
periods
q=exp(2ri7), q"/"ua =exp(2mipa), Yo_qPa =0,
Qup = T AL = 27 (ap — 3

«

Expression ©(Y)(1,,) converges either if |g| < 1, orif g™ = 1 (the series

is truncated).

The (n—1) x (n—1) matrix A7, ; is a Gram matrix of a lattice A7, dual

to the root lattice A,_1 = sl/(n), since we have A*;g = A = (0 + 1)

and A,3 = (ea, e), where vectors e, = ( 0,...,0 ,1,0,...,0,—1)
——

(a—1) times

form the basis in the root space of slini.



7. "Noncompact” solution for the evolution operator ©
Proposition. In case |q| > 1 one can find another solution:

L
0(p.) = exp( 5. 32 7).

of the evolution equations.
Written in the independent variables p = {p1,...,pn_1} it reads

@(2)(5) - exp(_ﬂ?i Z papﬁ) = exp{—7ri (B, Q—15)}’

1<a<p<n—1
where the inverse matrix of periods is

1
5 (
and A,3 = (€., eg) is the Gram matrix for the root lattice A,_1. Note
that the logarithmic change of variables: log(u.)/(27i) = po — 7/N
which was rather superficial in case of ©(1), is inevitable for the

derivation of ©(2),
0

1
1
Qaﬁ: 50¢ﬁ+1):ZAaﬂ>
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Finally, we comment on relation between the two evolution operators
o) = ¢(B, Q) and ©(). The relation is based on the identity for
multidimensional theta functions

9B, Q1) = (det(Q/i));exp{m(ﬁ, 9—15)}9(5, Q).

With our particular matrix of periods 2 we find

L1 2n\ 0B, Q)
@) — L (27\" )
o= (p) \m( i ) 015, Q1)

Note that theta function 9(Q~'g, —Q~") (in the denominator)
commutes with the elements of HD (with SLg4(n) R-matrix) and can be
thought as an evolution operator on a ‘modular dual’ quantum
cotangent bundle associated to dual R-matrix of SLg(n) type.
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8. Example

In the SL4(2) case the evolution operator ©(") becomes the Jacobi
theta function (L.D. Faddeev (1995)):

@(1)(/“) =3 q%k(k“‘”,uf = Y exp(wi K21 4+ 27i kzy) = 03(z1; q),

keZ keZ

where g = exp(27i7), 1 = exp(2ri z1)g~ /2. A multiplicative form for
O©is

S o0
M) =TT +q"wm)(1 + 9" ) = ]_[1(1 + g0y + @),
n=1 e
where 7(q) = 15> (1 — g"). For dual evolution operator we have
(1) =" exp( ——k2 + —kz1 Y LTS
kez =
where E] = exp(_z%i), fiy = eXp(Zm )q_1/2.
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What is a dual HD for the standard HD of SL,(n) type (which
centralize each other)?

Explicit expressions for evolution operator © in the case of
B, C, D quantum groups. In these cases Gram matrices A
and their dual A* = (A)~" are such that B and C type
evolution operators are dual to each other.

3D analogue of RE (tetrahedron RE) were proposed in
A.P.Isaev and P.P.Kulish, Mod. Phys. Lett. A12 (1997) 427
(hep-th/9702013). The analog of 3D RTT algebra is also
known: R123 T1 T2 T3 = T3 T2T1 R123. What kind of
cross-commutation relations are needed to describe
discrete evolution in 3D case?
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