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Notion of Faddeev’s modular double

Consider standard Heisenberg algebra (HA) generated by operators

x ,p

[x , p] = i .

Introduce the algebra T (quantum torus) with generators U,V

U = eiαx , V = eiβp ,

(α, β are parameters) with commutation relations

U V = q V U q = e−i αβ .

Is the algebra T of quantum torus (in above realization) is ”equivalent”
(representation theories are identical) to the Heisenberg algebra?

The answer is NO!
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Notion of Faddeev’s modular double
Indeed, one can construct another ”dual” algebra T̃ of quantum torus

Ũ = eiα̃x , Ṽ = ei β̃p .

Ũ Ṽ = q̃ Ṽ Ũ , q̃ = e−i α̃β̃ ,

with another parameters α̃, β̃. Then, if α̃ = 2π
β , β̃ = −2π

α , , the

generators U,V of T commute with generators Ũ Ṽ of T̃ and
deformation parameters q and q̃ are related by modular transformation

q = e−i αβ = ei2πτ → q̃ = e−i α̃β̃ = e−
i2π
τ (τ → τ̃ = −1

τ
) .

The double of algebras T and T̃ is called modular double.

The modular double of T and T̃ is ”equivalent to HA”!
The notion of the modular double was introduced by L.D.Faddeev for
the case of Uq(sl(2)) (1995-1999).
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Notion of Faddeev’s modular double

Let x be a coordinate and p be a momentum of a free particle. The
evolution of this particle with evolution operator Θ(t) = exp( i

2p2 t):
p → Θ(t) p Θ(t)−1 = p, x → Θ(t) x Θ(t)−1 = x + p t .

For coordinates U,V of quantum torus T , we obtain the evolution

V → Θ(t) V Θ(t)−1 = V , U → Θ(t) U Θ(t)−1 = U eiαtp e
iα2t

2 ,

and for special interval t = β
α = − β̃

α̃ we obtain discrete evolution on T

V → Θ(V ) V Θ(V )−1 = V , U → Θ(V ) U Θ(V )−1 = U V q−
1
2 ,

where we denote Θ(V ) = Θ(βα). This leads to the equation on Θ(V )

Θ(V ) = q
1
2 Θ(qV ) V ,

which can be solved in terms of the Jacobi theta-function (|q| < 1)

Θ(V ) =
∞∏

n=1

(1 + qn−1/2V )
∞∏

n=1

(1 + qn−1/2V−1) .
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Notion of Faddeev’s modular double

How can one relate evolution operator Θ(t) = exp( i
2p2 t) and evolution

operators

Θ(V ,q) =
∏∞

n=1(1 + qn−1/2V )
∏∞

n=1(1 + qn−1/2V−1) ,

Θ(Ṽ , q̃) =
∏∞

n=1(1 + q̃n−1/2Ṽ )
∏∞

n=1(1 + q̃n−1/2Ṽ−1) ,

which are ”compact” evolution operators for dual quantum torus T and
T̃ , respectively?
The answer is given by known identity for theta-functions

exp
(

i
2

p2 β

α

)
∼ Θ(V ,q)

Θ(Ṽ , q̃)
.

Below we obtain these formulas in the context of a discrete evolution of
the SLq(2)- quantum top model introduced by Faddeev and Alekseev.
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1. R-matrices
Let V be a finite dimensional C-linear space. For any operator
X ∈ End(V ⊗ V ) and integers i > 0, j > 0 we denote

Xi i+1 := I⊗(i−1) ⊗ X ⊗ I⊗(j−1) ∈ End(V⊗(i+j)) ,

where I ∈ Aut(V ) is the identity operator.

Def 1. An operator R̂ ∈ Aut(V ⊗ V ) is called an R-matrix if

R̂ i1i2
k1k2

R̂k2i3
n2j3 R̂k1n2

j1j2 = R̂ i2i3
k2k3

R̂ i1k2
j1n2

R̂n2k3
j2j3 .

These braid relations can be written in concise matrix form:

R̂12 R̂23 R̂12 = R̂23 R̂12 R̂23

Def 2. An R-matrix R̂ is called a Hecke type R-matrix if

(R̂ − q 1)(R̂ + q−1 1) = 0 , (1 = I ⊗ I) .
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1. R-matrices
Consider the set of antisymmetrizers A(k)(q) which can be defined by
recurrent relations:

A(k+1) =
[k ]q

[k + 1]q
A(k)

(
qk

[k ]q
− R̂k

)
A(k) ∈ End(V⊗(k+1)) .

Def 3. A Hecke type R-matrix R̂ for q – generic is called GLq(n) type
R-matrix if it satisfies

1.) A(n+1) = 0 ⇔ A(n)
( qn

[n]q
I − R̂n

)
A(n) = 0 , 2.) rk(A(n)) = 1 .

An example of GLq(n) type R-matrix is the standard Drinfeld-Jimbo’s
R-matrix

R̂◦ =
n∑

i,j=1

qδij Eij ⊗ Eji + (q − q−1)
∑
i<j

Eii ⊗ Ejj ,

where (Eij)kl := δikδjl are (n × n) matrix units.
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Def 4. R̂ is called skew invertible if ∃Ψ ∈ End(V⊗2) such that

R̂ i1m2
j1k2

Ψk2i3
m2j3 = Ψi1m2

j1k2
R̂k2i3

m2j3 = δi1
j3 δ

i3
j1 .

With any skew invertible R̂ we associate matrix D ∈ End(V ):

D1 = Tr(2)Ψ12 ,

where Tr(i) – trace in i-th space. Then, we define a quantum trace

(q-traces) for any quantum matrix Y

Y 7→ TrD(Y ) := Tr(D Y ) ,

which possesses many remarkable properties, e.g.,

TrD (2)(R̂
ε
12 Y1 R̂−ε12 ) = I1 TrD (Y ) (ε = ±1) ,

TrD(1,...,k)

([
R̂i i+1, Y(1...k)

])
= 0 (∀1 < i < k , ∀Y(1...k)) .
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3. RTT and Reflection equation (RE) algebras
Quantized functions over matrix group (RTT algebra)
(L.Faddeev,N.Reshetikhin,L.Takhtajan (1989)).

Let R̂ be a skew invertible R-matrix. Consider an associative unital

algebra generated by matrix components ‖T i
j ‖

dim V
i,j=1 which satisfy

R̂12 T1 T2 = T1 T2 R̂12 .

The extension of this algebra by a set of components ‖(T−1)i
j‖

dim V
i,j=1 :∑

k

T i
k (T−1)k

j =
∑

k

(T−1)i
k T k

j = δi
j 1 ,

is a Hopf algebra with coproduct, counit and antipode mappings:

∆(T i
j ) =

∑
k

T i
k ⊗ T k

j , ε(T i
j ) = δi

j , S(T i
j ) = (T−1)i

j .

This algebra is called an RTT algebra and denoted by F [R̂].
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Def 5. Let R̂ be a skew invertible R-matrix. An associative unital
algebra L[R̂] with generators ‖Li

j‖
dim V
i,j=1 satisfying relations

L1 R̂12 L1 R̂12 = R̂12 L1 R̂12 L1 ,
is called a reflection equation (RE) algebra.

Consider REA L[R̂] for Hecke type R̂ and introduce elements (a0 = 1)

ai = TrD(1,...,i)
(
A(i)L1 . . . Li

)
, pi = TrD(Li) (i ≥ 1)

where L1 := L1 , Lk+1 := R̂k Lk R̂−1
k . Elements pi and ai are central

and called power sums and elementary symmetric functions, resp.
Prop. 1. Quantum Newton relations and q- Cayley-Hamilton identity

iq ai + (−1)i ∑i−1
j=0 (−q)jaj pi−j = 0 ∀ i ≥ 1 ,∑n

j=0 (−q)j aj Ln−j = 0 .
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Prop. 2 The set of elementary symmetric functions {aj , j = 1, ...,n}
generate the whole center in REA L[R̂GLq(n)].

Def 5. A spectral extension of REA L[R̂] for GLq(n) type R̂-matrix is
the extension of L[R̂] by a set of invertible central elements µα
(α = 1, . . . ,n) such that

[µα, Li
j ] = 0

and
ai =

∑
1≤j1<···<ji≤n

µj1µj2 . . . µji ∀ i = 1, . . . ,n.

It means that the Cayley-Hamilton identity can be written in factorized
form ∑n

j=0 (−q)j aj Ln−j =
∏n

α=1

(
L− qµαI

)
= 0 .
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4. Heisenberg double of RTT and RE algebras

Def 6. A Heisenberg double (HD) algebra of the RTT and RE algebras

is an associative unital algebra generated by elements T i
j ∈ F [R̂] and

Li
j ∈ L[R̂] subject to commutation relations

R̂12 T1 T2 = T1 T2 R̂12 .

L1 R̂12 L1 R̂12 = R̂12 L1 R̂12 L1 ,

γ2 T1 L2 = R̂12 L1 R̂12 T1 , (γ ∈ {C\0}) .

This algebra is a quantization of the Poisson structure on T ∗(GL(n)):

{T i
j , T k

m} = 0, {`i
j , `

k
m} = 2(δi

m`
k
j −δk

j `
i
m), {`i

j , T k
m} = δk

j T i
m.
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4. Heisenberg double of RTT and RE algebras

T i
j → T i

j , Li
j → δi

j + h `ij + . . . , R ij
km → δi

mδ
j
k + h δi

kδ
j
m + . . . .

HD algebra is interpreted as quantum group
cotangent bundle, where RTT algebra is a base and
RE algebra is a bundle.

For the spectral extension of HD we have additional
commutators of T i

j and Li
j with spectral elements {µα}

[µα, Li
j ] = 0, [µα, T i

j ] = . . .
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5. Discrete time evolution on quantum group
cotangent bundle
Consider sequence of automorphisms on the HD (F ]L)[R̂]

{T , L} θk

−→ {T (k), L(k)} , ∀ k = 0,1,2, . . . ,

R̂12 T1(k) T2(k) = T1(k) T2(k)R̂12

R̂12 L1(k)R̂12 L1(k) = L1(k) R̂12 L1(k)R̂12 ,

γ2 T1(k) L2(k) = R̂12 L1(k) R̂12 T1(k) .

Here k is a discrete time. For any R̂-matrix these automorphisms can
be realized as (Faddeev–Alekseev discrete time evolution for the
quantum top)

T (k) = Lk T , L(k) = L .
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5. Discrete time evolution for SLq(n) case
Consider the case when RTT algebra is SLq(n) quantum group. In this
case we require

detq(T ) = Tr(1,...,n)

(
A(n)T1 T2 · · ·Tn

)
= 1 .

Discrete time evolution must conserve this relation, i.e., we have
detq(Lk T ) = 1 (∀k > 0). This leads to the conditions

an = Tr
D(1,...,n)

(
A(n)L1 L2 · · · Ln

)
= q−1 , γn = q .

We will investigate the discrete evolution for HD of SLq(N) type. The
key point is that ∃ the special evolution operator Θ:

T (k + 1) = L T (k) = Θ T (k) Θ−1 , L(k + 1) = Θ L(k) Θ−1 = L .

For the case of ”ribbon Hopf algebra” the Faddeev-Alekseev evolution
is given by Θ = ribbon element.
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6. Evolution operator Θ for SLq(n) case.
Thus, we have for the first shift k = 1:

L T = Θ T Θ−1 , L = Θ L Θ−1 , (1)

and we assume Θ = Θ(µ1, . . . , µn), where
∏n
α=1 µα = q−1.

For the HD with R̂-matrix of the SLq(n)-type the evolution operator
Θ(µα) is a solution of eqs. (1) which are written as

Θ
(
∇α(µβ)

)
= q−1µ−1

α Θ(µβ) ∀α = 1, . . . ,n , (2)

where ∇α are finite shift operators ∇α(µβ) := q2Xαβ µβ and the matrix
X is a Gram matrix

Xαβ = 〈~e ∗α , ~e ∗β 〉 = δαβ −
1
n

(α, β = 1, . . . ,n) ,

for the set of vectors: ~e ∗α = 1
n (−1, . . . ,−1︸ ︷︷ ︸

(α−1) times

,n −1,−1, . . . ,−1 ).
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As a result we obtain (special solution):
Proposition. In case |q| < 1 a solution is expressed via
multidimensional theta-function

Θ(1)(µα) = θ(~p,Ω) =
∑
~k∈Zn−1

exp
{
πi (~k , Ω~k) + 2πi (~k , ~p)

}
,

where τ is a modular parameter, Ω is (n − 1)× (n − 1) matrix of
periods

q = exp(2πi τ), q1/nµα = exp(2πi pα),
∑n

α=1 pα = 0,

Ωαβ = 2τ
n A∗αβ = 2τ (δαβ − 1

n ) ,

——————————————————————————————
Expression Θ(1)(µα) converges either if |q| < 1, or if qm = 1 (the series
is truncated).
The (n− 1)× (n− 1) matrix A∗αβ is a Gram matrix of a lattice A∗n−1 dual
to the root lattice An−1 = sl(n), since we have A∗−1

αβ = Aαβ = (δαβ + 1)
and Aαβ = (eα,eβ), where vectors eα = ( 0, . . . ,0︸ ︷︷ ︸

(α−1) times

,1,0, . . . ,0,−1)

form the basis in the root space of sl(n).
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7. ”Noncompact” solution for the evolution operator Θ
Proposition. In case |q| ≥ 1 one can find another solution:

Θ(2)(pα) := exp
(
− πi

2τ

n∑
β=1

p2
β

)
,

of the evolution equations.
Written in the independent variables ~p = {p1, . . . ,pn−1} it reads

Θ(2)(~p) = exp
(
−πi
τ

∑
1≤α≤β≤n−1

pαpβ
)

= exp
{
−πi (~p, Ω−1~p)

}
,

where the inverse matrix of periods is

Ω−1
αβ =

1
2τ

(δαβ + 1) =
1
2τ

Aαβ ,

and Aαβ = 〈eα,eβ〉 is the Gram matrix for the root lattice An−1. Note
that the logarithmic change of variables: log(µα)/(2πi) = pα − τ/n
which was rather superficial in case of Θ(1), is inevitable for the
derivation of Θ(2).
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Finally, we comment on relation between the two evolution operators
Θ(1) = θ(~p, Ω) and Θ(2). The relation is based on the identity for
multidimensional theta functions

θ(Ω−1~p, −Ω−1) =
(

det
(
Ω/i
)) 1

2 exp
{
πi(~p, Ω−1~p)

}
θ(~p, Ω) .

With our particular matrix of periods Ω we find

Θ(2)(~p) =
1√
n

(2τ
i

) n−1
2 θ(~p, Ω)

θ(Ω−1~p, −Ω−1)
.

Note that theta function θ(Ω−1~p, −Ω−1) (in the denominator)
commutes with the elements of HD (with SLq(n) R̂-matrix) and can be
thought as an evolution operator on a ‘modular dual’ quantum
cotangent bundle associated to dual R̂-matrix of SLq̃(n) type.
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8. Example
In the SLq(2) case the evolution operator Θ(1) becomes the Jacobi
theta function (L.D. Faddeev (1995)):

Θ(1)(µ1) =
∑
k∈Z

q
1
2 k(k+1)µk

1 =
∑
k∈Z

exp(πi k2τ + 2πi kz1) = θ3(z1; q) ,

where q = exp(2πi τ), µ1 = exp(2πi z1)q−1/2. A multiplicative form for
Θ is

1
η(q)Θ(1)(µ1) =

∞∏
n=1

(1 + qnµ1)(1 + qn−1/µ1) =
∞∏

n=1
(1 + qnσ1 + q2n−1) ,

where η(q) =
∏∞

n=1(1− qn). For dual evolution operator we have

Θ̃(1)(µ1) =
∑
k∈Z

exp(−πi
τ

k2 +
2πi
τ

kz1) =
∑
k∈Z

q̃
1
2 k(k+1)µ̃k

1 ,

where q̃ = exp(−2πi
τ ), µ̃1 = exp(2πi

τ z1)q̃−1/2.
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Summary

What is a dual HD for the standard HD of SLq(n) type (which
centralize each other)?
Explicit expressions for evolution operator Θ in the case of
B,C,D quantum groups. In these cases Gram matrices A
and their dual A∗ = (A)−1 are such that B and C type
evolution operators are dual to each other.
3D analogue of RE (tetrahedron RE) were proposed in
A.P.Isaev and P.P.Kulish, Mod. Phys. Lett. A12 (1997) 427
(hep-th/9702013). The analog of 3D RTT algebra is also
known: R123T1T2T3 = T3T2T1R123. What kind of
cross-commutation relations are needed to describe
discrete evolution in 3D case?
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