
Defects in the Liouville field theory

Sarkissian Gor

August, 2010

Yerevan, Armenia



Defects: General overview

Defects in two-dimensional quantum field theory are

oriented lines separating different quantum field the-

ories. The notion of the defects is very rich and

defects appear in the numerous different topics, like

condensed matter, string theory, algebraic topology,

Langland theory, boundary conformal field theory,

D-branes, N = 2 4D gauge theories



Example 1 : Lagrangian approach

S =
∫

Σ1

L1 +
∫

Σ2

L2 +
∫
∂Σ1

Ldef (1)

where ∂Σ1 = −∂Σ2



Example 2: WZW model

g1g
−1
2 |defect = C

µ
G, C

µ
G = βe2iπµ/kβ−1, β ∈ G

(2)

where µ ≡µ · H is a highest weight representation

integrable at level k, taking value in the Cartan sub-

algebra.



Let us briefly comment about the role of defects in

the mentioned topics.

• Condensed matter. In condensed matter defects

play important role in the consideration of im-

purities , quantum wires, quantum Hall effects,

renormalization group flow.

• String Theory. Defects appear as domain wall in

String theory in the context of Ads/CFT corre-

spondence

• Boundary conformal field theory and D-branes.

Topological defects can be fused with boundary



states producing new boundary states. Hence,

defects can be used as efficient tool for produc-

ing new boundary states. Given that in String

theory boundary states can be realized as D-

branes in target space, defects can be associated

to the various operations of the D-branes trans-

formations, like T-dualities and monodromies.

• Algebraic topology. It is established by now that

D-branes are classified by K-theory. Therefore

topological defects can be associated to topo-

logical operations in K-theory. It is conjectured

that defects can be interpreted as kernel of the

Fourier-Mukai transform.



• Langland program. Topological defects also play

an important role in the recently established con-

nection between geometric Langland program

and dimensionally reduced topologically twisted

N = 4 four-dimensional super Yang-Mills theory.

• N = 2 4D gauge theory. Expectation values of

the Wilson- t’ Hooft operators in a class of N = 2

theories are related to correlation functions in

the presence of defects of the Liouville CFT.



Topological defects in RCFT

Maximally-symmetric topological defect lines are de-

fined by the conditions:

T (1) = T (2) W (1) = W (2) (3)

T̄ (1) = T̄ (2) W̄ (1) = W̄ (2) (4)

After modular transformation these defects are given

by operators X, satisfying relations:

[Ln, X] = [L̄n, X] = 0 (5)

[Wn, X] = [W̄n, X] = 0 (6)

As in the case of the boundary conditions, there are

also consistency conditions, analogous to the Cardy



and Cardy-Lewellen constraints, which must be sat-

isfied by the operator X. For simplicity we shall

write all the formulae for diagonal models ī = i∗. To

formulate these conditions, one first note that as

consequence of (5) and (6) X is a sum of projectors

X =
∑
i

DiP i (7)

where

P i =
∑
N,N̄

(|i, N〉 ⊗ |i∗, N̄〉)(〈i, N | ⊗ 〈i∗, N̄ |) (8)

An analogue of the Cardy condition for defects re-

quires that partition function with insertion of a

pair defects after modular transformation can be

expressed as sum of characters with non-negative

integers. For diagonal models one can solve this



condition taking for each primary a

Di
a =

Sai
S0i

(9)

for which one has:

Zab = Tr
(
X†aXbq̃

L0− c
24˜̄qL̄0− c

24

)
=
∑
k,īi

Na
bkN

k
īiχi(q)χ̄i(q̄)

(10)

Associativity of the 4-point functions with the defect

insertion implies classifying algebra condition.

For self-conjugate models i = i∗ without multiplici-

ties Na
bk = 0,1 it reads:

∑
k

(Ckij)
2C1

kkD
k

(
Fk0

[
i i
j j

])2

= C1
iiD

iC1
jjD

j (11)



Liouville theory

Let us review basic facts on the Liouville field theory.

Liouville field theory is defined on a two-dimensional

surface with metric gab by the local Lagrangian den-

sity

L =
1

4π
gab∂aϕ∂bϕ+ µe2bϕ +

Q

4π
Rϕ (12)

where R is associated curvature. This theory is con-

formal invariant if the coupling constant b is related

with the background charge Q as

Q = b+
1

b
(13)

The symmetry algebra of this conformal field theory



is the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
cL
12

(n3 − n)δn,−m (14)

with central charge

cL = 1 + 6Q2 (15)

Primary fields Vα in this theory, which are associated

with exponential fields e2αϕ, have conformal dimen-

sions

∆α = α(Q− α) (16)

The spectrum of the Liouville theory is believed to

be of the following form

H =
∫ ∞

0
dp RQ

2 +iP
⊗RQ

2 +iP
(17)



where Rα is the highest weight representation with

respect to Virasoro alegbra. Characters of the rep-

resentations RQ
2 +iP

are

χP (τ) =
qP

2

η(τ)
(18)

where

η(τ) = q1/24
∞∏
n=1

(1− qn) (19)

Modular transformation of (18) is well-known:

χP (−
1

τ
) =
√

2
∫
χP ′(τ)e4iπPP ′dP ′ (20)

Degenerate representations appear at αm,n = 1−m
2b +

1−n
2 b and have conformal dimensions

∆m,n = Q2/4− (m/b+ nb)2/4 (21)

where m,n are positive integers. At general b there



is only one null-vector at the level mn. Hence the

degenerate character reads:

χm,n(τ) =
q−(m/b+nb)2 − q−(m/b−nb)2

η(τ)
(22)

Modular transformation of (22) is

χm,n(−
1

τ
) = 23/2

∫
χP (τ) sinh

2πmP

b
sinh(2πnbP )dP

(23)



Defects in the Liouville field theory

Ds(P ) =
cos(4Pπs)

2 sinh(2πbP ) sinh(2Pπ/b)
=

SsP
S(1,1),P

(24)

and

Dm,n(P ) =
sinh(2πmPb−1) sinh(2πnbP )

sinh(2πbP ) sinh(2Pπ/b)
=
S(m,n),P

S(1,1),P
(25)

Now one can define

Xs =
∫
P
Ds(P )idP⊗PdP (26)



and

Xm,n =
∫
P
Dm,n(P )idP⊗PdP (27)

where idP⊗P is the identity operator on the space

RQ
2 +iP

⊗RQ
2 +iP

.


