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Abstract

A Lorentzian theory of noncommutative gravity with torsion coupled to U(1)?
Chern-Simons gauge fields and charged matter is investigated. The construction is

a generalisation of the well-known relationship between three-dimensional gravity

and Chern-Simons theory and it can be viewed as a toy model for a noncommuta-

tive deformation of the U(2) × U(2) Aharony-Bergman-Jafferis-Maldacena model.

Utilising the Harvey-Kraus-Larsen solution-generating technique, BPS solutions of

the field equations are constructed which are exact for all values of the noncom-

mutativity parameter θ, regular for θ 6= 0 and singular in the limit θ → 0. The

gravitational interpretation of the solutions is discussed.
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1 Noncommutative Field Theory

We start by recalling some facts about noncommutative field theories and setting up the

notation. We then briefly review Chern-Simons theory and its relation to gravity with

torsion.

Consider a flat noncommutative space with coordinates (t, x, y). Time t is taken as a real

(commuting) parameter while the operators associated to x and y satisfy

[x̂, ŷ] = −iθ, (1.1)

where θ is a commuting parameter of length dimension 2. There is a one-to-one Moyal-

Weyl correspondence between operators on Hilbert space and ordinary functions: for a

given function f with Fourier decomposition

f(x, y) =

∫
d2k

(2π)2
f̃(k)ei(kxx+kyy), (1.2)

the corresponding operator f̂ is the Weyl ordering of the formal expression

f̂(x̂, ŷ) =

∫
d2k

(2π)2
f̃(k)ei(kxx̂+ky ŷ). (1.3)

The operator product f̂ · ĝ of two operators f̂ , ĝ corresponds to the ? product of functions

f, g defined by

f ? g(x, y) ≡ e
− i

2
θ
(

∂
∂x1

∂
∂y2
− ∂
∂x1

∂
∂y2

)
f(x1, y1)g(x2, y2)|x1=x2,y1=y2 (1.4)

Noncommutative field theory Lagrangians can be written in the operator framework or in

terms of commutative fields for which the ordinary product is replaced by the ? product

defined in (1.4); we will be using both approaches.

A basis for the Hilbert space is given by the eigenstates {|n〉} of the creation and annihi-

lation operators defined by

â =
x̂− iŷ√

2θ
, â† =

x̂+ iŷ√
2θ

(1.5)

in such a way that they satisfy the commutation relation [â, â†] = 1. The projection

operator |n〉〈n| is mapped to the function 2(−1)nLn(2r2

θ
)e−

r2

θ , where Ln(z) is the n-th

order Laguerre polynomial. Any operator Ô can be expressed as a linear combination

ΣmnOmn|m〉〈n| for some complex coefficients Omn. For example, the number operator

N̂ = ââ† is diagonalised by the basis states {|n〉} and since its eigenvalues N ∼ 1
2θ

(x2+y2),

it measures the square of the distance to the origin.
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Under the Moyal-Weyl mapping, integration over space becomes the operator trace, which

we denote by Tr:∫
d2xf ←→ 2πθTrf̂ ;

derivatives are related to commutators as follows:

∂xf → −
i

θ
[ŷ, f̂ ], ∂yf →

i

θ
[x̂, f̂ ],

i. e.

∂zf → −
1√
θ

[â†, ·], ∂z̄f →
1√
θ

[â, ·]

in the complex coordinates defined by z = 1√
2

(x+ iy) =
√
θâ. In the following, for the

sake of simplicity, we often drop the hats on operators.

2 Noncommutative Chern-Simons and Gravity with

Torsion

Consider noncommutative Chern-Simons theory with gauge group G and action

SCS =

∫
dt2πθTr

[
κ

2
εµνρtr

(
Aµ∂νAρ −

2i

3
AµAνAρ

)]
, (2.1)

where tr denotes the trace over group indices and κ is a coupling related to the Chern-

Simons level k by κ = k
2π

. As explained in [24, 25], gauge invariance requires κ to

be quantised if Π1(G) is nontrivial, as is the case for U(n) (remarkably, this includes

the case of the noncommutative U(1) theory). The action is then invariant under the

noncommutative gauge transformations

Aµ → U †AµU + iU †∂µU, (2.2)

where U is a t-dependent element of G which acts as the identity on the {|n〉} as n→∞.

Following [28, 20], the construction of ref. [12] involves considering the difference

SLR = SLCS − SRCS (2.3)

of the actions for two noncommutative Chern-Simons gauge gauge fields AL and AR with

the same coupling κ and a product gauge group G = U(1, 1)?×U(1, 1)?. Note that a single

Chern-Simons term (2.1) breaks parity, whereas the difference (2.3) is parity invariant;

parity invariance is unbroken in gravity, so at least two such terms are needed in the
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construction. The choice of gauge group G is natural for a noncommutative generalisation

of the relationship between three dimensional gravity and SO(2, 1) × SO(2, 1) Chern-

Simons theory in a Lorentzian space [28, 20]3. An element M of U(1, 1)? satisfies

M−1 = ηM †η, M ?M−1 = M−1 ? M = 1, (2.4)

where η = diag(−1, 1). All fields can be chosen to be real and their reality is preserved

under noncommutative gauge transformations. Write

A = ω +
1

l
e+

i

2
b

Ã = ω − 1

l
e+

i

2
b̃, (2.5)

with l a real constant of length dimension −1 and

ω = ωτa, e = eaτa, b = bI, b̃ = b̃I. (2.6)

Here a = 0, 1, 2 and τA (A = 0, 1, 2, 3) are the generators of the Lie algebra u(1, 1). In

terms of the standard Pauli matrices, the τA can be chosen as follows:

τ0 =
i

2
σ3, τ1 = σ1, τ2 =

1

2
σ2, τ3 =

i

2
I (2.7)

and the normalisation is

tr (τAτB) =
1

2
ηAB, (2.8)

where ηAB = diag(−1, 1, 1,−1) is the u(1, 1) inner product. The action (2.3) can then be

written as

SECS =
1

l

∫
εabc

(
ea ∧Rbc − 1

3l2
ea ∧ eb ∧ ec

)
−1

2

∫
(b ∧ db− b ∧ b ∧ b) +

1

2

∫ (
b̃ ∧ db̃− b̃ ∧ b̃ ∧ b̃

)
+
i

2l

∫
ηab
(
ea ∧ ωb + ωa ∧ eb

)
∧
(
b+ b̃

)
+
i

2l

∫
ηab

(
ωa ∧ ωb +

1

l2
ea ∧ eb

)
∧
(
b− b̃

)
(2.9)

(we use units in which 16πGN = 1, where GN denotes the Newton constant). Here all

wedge products are taken with respect to the ? product and

R = dω + ω ∧ ω
T = de+ ω ∧ e+ e ∧ ω. (2.10)

3A closely related Euclidean theory of noncommutative gravity based on the complex group GL(2,C)

was discussed in ref. [7].
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If ω is interpreted as the Levi-Civita connection and the U(1, 1)? valued fields R and T
are expanded as

R = Raτa −
i

2
ηabω

a ∧ ωbτ3

T = T aτa −
i

2
(ωa ∧ ea + ea ∧ ωa) τ3, (2.11)

then the expressions (2.10) yield formulae for the quantities Ra and T a which are non-

commutative generalisations of the familiar expressions for the curvature and torsion,

viz.

Ra = dωa − 1

2
εabcω

a ∧ ωb

T a = dea +
1

2

(
ωab ∧ eb + ωb ∧ ωba

)
, (2.12)

wherein

ωab = εabcωc, Rab = εabcRc. (2.13)

Thus (2.3) (or (2.9)) describes a three -dimensional theory of torsionful gravity in non-

commutative space with a negative cosmological constant Λ = −1/l2 coupled to two

noncommtutative U(1)? Chern-Simons gauge fields b and b̃ [12]. Moreover the invari-

ance of (2.3) under the gauge transformations (2.2) translates into transformations of the

fields ω, e, b, b̃ which leave the action (2.9) invariant and can be interpreted as deformed

rotations, translations and U(1)× U(1) gauge transformations.

3 Adding Higgs Scalars

Let us now consider adding matter to the noncommutative Chern-Simons action (2.3).

In order to study vortices and solitons in our model, we mostly need to consider charged

noncommutative Higgs fields with a particular sixth order potential. The matter action

will be of the form

Smatter = SHiggs + Sferm, (3.1)

where the action for the noncommutative Higgs fields is

SHiggs =

∫
dt2πθTrtr

[
DµφD

µφ† + V (φφ†)
]

(3.2)

and Sferm denotes fermionic and other matter fields which we set to zero for the sake of

simplicity. As the gauge group G is a product of two U(1, 1)? factors, we need to distin-

guish gauge transformations with respect to the left U(1, 1)? from gauge transformations
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with respect to the right U(1, 1)? and mind the noncommutativity of operator orderings.

The Higgs fields can be chosen to transform in the adjoint, the fundamental or the bifun-

damental representations of G; here we will focus on the fundamental and bifundamental

representations.

For a charged noncommutative Higgs field in the fundamental representation, we can

consider the ‘left module’ [17, 14, 21] in which the fields transform as

φ→ ULφ, ALµ → (UL)†ALµU
L + i(UL)†∂µU

L (3.3)

and the covariant derivative is defined by

Dµφ = ∂µφ− iALµφ. (3.4)

We can also consider the ‘right module’ in which the fields transform as

φ→ φUR, ARµ → (UR)†ALµU
R − i(UR)†∂µU

R (3.5)

and the covariant derivative is

Dµφ = ∂µφ− iφARµ . (3.6)

For φ in the bifundamental representation,

φ→ ULφUR (3.7)

and

Dµφ = ∂µφ− iALµφ+ iφARµ . (3.8)

A special case of the bifundamental transformations is obtained by setting

ALµ = ARµ = Aµ, Dµφ = ∂µφ− iAµφ+ iφAµ; (3.9)

this corresponds to the diagonal U(1, 1)?. Note that the noncommutative gauge transfor-

mations considered above reduce to the their commutative counterparts U(1, 1)L, U(1, 1)R
and U(1, 1)diag in the limit θ → 0.

The Higgs potential is taken to be of the form

V (ξ) = − 1

κ2
ξ
(
v2 − ξ

)2
. (3.10)

This is the Bogomol’nyi limit of the general gauge invariant and renormalisable potential

possessing a symmetry breaking minimum at v = |φ|; in this limit the symmetric minimum

is degenerate with the asymmetric one [29]. The corresponding couplings to the gravity,

torsion and abelian Chern-Simons fields can be obtained by expanding the Higgs field as

φ = φaτa + ϕI (3.11)
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and expressing the kinetic term in (3.2) in terms of ω, e, b and b̃ using (2.5) and (2.7)-(2.8).

For a Higgs field in the bifundamental representation, this yields

SECSH =

∫ [
∂µφ

a∂µφ†a + ∂µφ
aϕ†τa + ϕ∂µφ

a†τ †a + ϕϕ†I+

+i

(
1

2
∂µφ

a∂µφ†a + ∂µφ
aϕ†τa + ∂µϕφ

a†τ †a + ∂µϕϕ
†I
)(

ω +
1

l
e+

i

2
bI
)

+ . . .

+ . . .+ V (φφ†)
]
.

The expression (3.12) simplifies considerably for Higgs fields in the left or right module,

as can be seen by setting AR = 0 and AL = 0, and for fields in the diagonal U(1, 1)? (for

which AR = AL = A).

The action of the model which we will be investigating further below can be written

alternatively as

S = SLR + SHiggs, (3.12)

where SLR is given in (2.3) and SHiggs in (3.2), or more explicitly as

S = SECS + SECSH (3.13)

where SECS is the CKMZ action (2.9) and SECSH is the action for the noncommutative

Higgs system coupled to the noncommutative gravity, torsion and U(1)? Chern-Simons

gauge fields given in eq. (3.12).

It is interesting to compare the θ → 0 limit of this model to the bosonic part of ABJM

theory [30], which was proposed as a description of multiple M2-branes probing a C4/Zk
singularity. More precisely, we need to compare with the bosonic part of the maximally

supersymmetric mass deformation of the ABJM model in ref. [34]. Recall that the ABJM

theory with gauge group U(N)×U(N) is an ordinary Chern-Simons-matter system with

N = 6 superconformal symmetry describing the low-energy limit of N M-branes near the

singularity. In the ’t Hooft limit of large N with fixed ratio N/k, this theory is conjectured

to be dual to type IIA superstring theory on AdS4×CP3. The case of particular interest

to us is that of N = 2 and gauge group U(2)×U(2), as this is most closely related to the

model studied here; for k = 2, this describes two M2-branes on an R8/Z2 orbifold [30].

The ABJM action for this case is

SABJM = SLCS + SRCS + Smatter (3.14)

where SLCS and SRCS are the actions for two ordinary Chern-Simons gauge fields AL,AR
and the Chern-Simons levels associated to the two U(2) factors of the gauge group are

equal and opposite:

SLCS+SRCS =
k

4π

∫
d3xεµνρ

[
tr

(
ALµ∂νALρ −

2i

3
ALµALνALρ

)
− tr

(
ARµ∂νARρ −

2i

3
ARµARνARρ

)]
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(3.15)

and Smatter is an action for complex fields CI and C̄I as well as fermions ψI and ψ̄I

transforming in the (2, 2̄) and (2̄,2) of U(2) respectively; here I = 1, 2, 3, 4 is the SU(4)

R-symmetry index. This action takes the form

Smatter =

∫
d3x

[
tr
(
DµCID

µC̄I
)

+ itr
(
ψ̄IγµDµψI

)]
+ Sint, (3.16)

where γµ = (iσ2, σ1, σ3) are the Dirac matrices. Here the covariant derivatives are defined

by

DµCI = ∂µCI + i
(
ALµCI − CIARµ

)
, DµC̄I = ∂µC̄I − i

(
C̄IALµ −ARµ C̄I

)
(3.17)

(with similar definitions for the fermions) and the interaction term is of the form

Sint =
4π2

3k2

∫
d3xtr

(
CIC̄

ICJC̄
JCKC̄

K + CIC̄
JCJC̄

KCKC̄
I

+4CIC̄
JCKC̄

ICJC̄
K − 6CIC̄

JCJC̄
ICKC̄

K
)

+ SY uk (3.18)

with SY uk containing ψ2C2 Yukawa coupling terms which will not concern us further.

The maximally supersymmetric deformation of ref. [34] breaks the SU4)R × U(1) global

symmetry of (3.19) to a SU(2)×SU(2)×U(1)×U(1)×Z2 symmetry which is preserved

by the deformation

Smass = −4πµ

k

∫
d3xtr

(
CIC̄

ICJη
J
KC̄

K − C̄ICIC̄
JηJKCK +

µk

4π
C̄ICI

)
− µtrψ̄IηJI ψJ ,

where µ denotes the mass deformation parameter and η = diag(1, 1,−1,−1). Setting

C1 = φ, CI = 0 for I = 2, 3, 4 and comparing the action

Sµ = SABJM + Smass (3.19)

with the θ → 0 limit of our noncommutative Chern-Simons-Higgs system (3.12), we find

that the bosonic part of the former essentially agrees with the latter, with the identification

v =

(
µk

4π

) 1
4

. (3.20)

Therefore (3.12) can be viewed as a toy model for a noncommutative generalisation of the

U(2)×U(2) ABJM model. It would be interesting to construct an N = 6 supersymmetric

generalisation of (3.12) and to identify a brane construction with magnetic fields in M

theory whose low-energy dynamics is related to the generalised model in the appropri-

ate limit [1]. We note that some relevant supergravity backgrounds with magnetic fields

have been constructed in the context of the AdS/CFT correspondences for noncommu-

tative N = 4 supersymmetric Yang-Mills theory [33] and for various noncommutative

generalisations of ABJM models [38] at large N .
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4 Noncommutative Chern-Simons Vortex Solitons

Consider the Chern-Simons-Higgs model of the previous section, with Higgs fields in the

bifundamental representation of U(1, 1)? × U(1, 1)? and the relativistic sixth order Higgs

potential (3.10) 4. The action is

S = SLCS + SRCS + SHiggs

=

∫
dt2πθTr

κ

2

[
εµνρtr

(
ALµ∂νA

L
ρ −

2i

3
ALµA

L
νA

L
ρ

)
− εµνρtr

(
ARµ∂νA

R
ρ −

2i

3
ARµA

R
ν A

R
ρ

)]
+

∫
dt2πθTrtr

[
Dµφ(Dµφ)† + V (|φ|2)

]
, (4.1)

where we introduced the notation |O|2 = OO† for any operator O and the covariant

derivatives are defined in (3.4), (3.6) and (3.8) depending on the chosen representation

for φ. The Bogomol’nyi bound and BPS equations for this system can be found by

standard methods [32]. The total energy is given by

E =

∫
dt2πθTrtr

[
D0φ(D0φ)† +Diφ(Diφ)† + V (|φ|2)

]
, (4.2)

which can be written equivalently as

E =

∫
dt2πθTrtr

[∣∣∣∣D0φ±
i

κ

(
v2 − |φ|2

)
φ

∣∣∣∣2 + |(D1 ± iD2)φ|2

±
(
|φ|2 − v2

)(
B − 1

κ
j0

)
∓ 1

2
εklDkjl ± v2B

]
.

(4.3)

Here jµ is the current density associated with U(1)? rotations,

jµ = i
[
Dµφφ

† − φ(Dµφ)†
]

(4.4)

and B = F12 is the magnetic field. The Gauss law constraint reads

κB = j0 (4.5)

so that, up to total derivative terms,

E =

∫
dt2πθTrtr

[∣∣∣∣D0φ±
i

κ

(
v2 − |φ|2

)
φ

∣∣∣∣2 + |(D1 ± iD2)φ|2 ± v2B

]
.

(4.6)

4Noncommutative generalisations of the nonrelativistic Jackiw-Pi potential [23] can also be considered,

as was done in [21] for the noncommutative generalisation of the abelian Yang-Mills-Higgs system and

in [13] for the noncommutative Chern-Simons-Higgs system.
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The Bogomol’nyi bound is thus

E ≥ v2 |Φ| , (4.7)

where Φ denotes the total flux density:

Φ = θTrtrB. (4.8)

The bound (4.7) is saturated by field configurations satisfying the BPS equations

(D1 ± iD2)φ = 0 (4.9)

D0φ±
i

κ

(
v2 − |φ|2

)
φ = 0. (4.10)

Using the Gauss law (4.5), eq. (4.10) can be rewritten as

B = ± 2

κ2
|φ|2

(
v2 − |φ|2

)
. (4.11)

Using the methods of ref. [26, 27, 13], it is now straightforward to find nontopological

soliton solutions of eq. (4.9) and (4.10). In the Fock basis, define projection and shift

operators Pm and Sm by

Sm =
∞∑
n=0

|n+m〉〈n| (4.12)

Pm =
m−1∑
n=0

|n〉〈n|, (4.13)

together with a further operator Zm:

Zm = PmaPm + SmaS
†
m, (4.14)

where a denotes the annihilation operator defined in eq. (1.5). The shift operator is a

non-unitary isometry,

S†mSm = 1, SmS
†
m = 1− Pm (4.15)

and it follows that the operator Zm satisfies the commutation relations[
Zm, Z

†
m

]
= 1−m|m− 1〉〈m− 1|. (4.16)

It will also be useful to introduce the covariant position operators defined by [39, 40]

XL
i = xi − θεijALj , XR

i = xi − θεijARj , (4.17)
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as they transform covariantly under the gauge transformations of the Chern-Simons fields

AL and AR. In particular, they can be used to measure the invariant size ∆ of the solitons.

For any density ρ (e. g. of energy or charge) associated with the solution, a convenient

definition is

∆ ≡

√
Trtr (Xi −Ri) (Xi −Ri)

Trtrρ
, (4.18)

where the Ri denotes the density center defined by

Ri ≡
TrtrXiρ

Trtrρ
. (4.19)

Now define operators

KL ≡ 1√
2θ

(
XL

1 − iXL
2

)
KR ≡ 1√

2θ

(
XR

1 − iXR
2

)
. (4.20)

Then

B =
1

θ

(
i+

1

θ

[
XL

1 , X
L
2

])
(4.21)

and the BPS equations (4.9) and (4.10) can be written equivalently as

(KL)†φ− φa† = 0 (4.22)

1−
[
KL, (KL)†

]
= ±2θ

κ2
|φ|2(v2 − |φ|2) (4.23)

for the left module, and similarly for the right module. For each value of the magnetic

field there are two types of solutions to these equations which can be written as

φL = λ±|m− 1〉〈0|, KL = Zm

φR = χ±|m− 1〉〈0|, KR = Zm, (4.24)

where the λ± and χ± are given by

λ2
± = v2

[
1±

(
1− 2mκ

θv4

) 1
2

]
. (4.25)

The solutions exist provided

θ ≥ 2mκ

v4
(4.26)
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and in particular they admit no commutative limits as the noncommutativity parameter

θ → 0. Once the BPS equations are solved, explicit expressions for the gauge fields

components ALµ and ARµ can be given. First, AR0 and AR0 are determined by (4.10) and

one finds

AL0 = ∓ 1

|κ|
(
v2 − |φL|2

)
, AR0 = ∓ 1

|κ|
(
v2 − |φR|2

)
; (4.27)

note that these components are also determined by their field equations as derived from

action (4.1), viz.

κεlkF
L
0l = jLk (4.28)

and

κεlkF
R
0k = jRk (4.29)

, together with expression (4.4) for the current. The spatial components of ALi and ARi
for the solutions (4.24) are then readily obtained from definitions (4.17) and (4.20):

AL1 =
i√
2θ

[
Pm
(
a+ a†

)
Pm + Sm

(
a+ a†

)
S†m −

(
a+ a†

)]
AL2 =

1√
2θ

[
Pm
(
a− a†

)
Pm + Sm

(
a− a†

)
S†m −

(
a− a†

)]
(4.30)

and similarly for the ARi . The operator Zm is given explicitly by

Zm =
m−2∑
n=0

√
n+ 1|n〉〈n+ 1|+

∞∑
n=0

√
n+ 1|n+m〉〈n+m+ 1|. (4.31)

The total flux of the solutions is obtained from (4.8) and (4.11); utilising (4.25), one finds

Φ = m. (4.32)

The corresponding value of the energy (which saturates the bound (4.7)) are

E = mv2. (4.33)

The centre position associated with the Hamiltonian density H (cf. eq. (4.2) vanishes on

the solution,

RH
i =

TrtrXiH0

Trtrρ
= 0, (4.34)

and the size of the energy density distribution is

∆H =

√
θ(m− 1)

(
1 +

(m− 2)λ2
±

mv2

)
. (4.35)
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The total charge carried by the solutions is

Q = 2πθTrtrj0 = 2πκm, (4.36)

the centre position RQ
i associated with the charge density j0 nanishes on the solution,

Ri =
TrtrXij0

Trtrj0

= 0, (4.37)

and the associated size is

∆Q =
√
θ(m− 1). (4.38)

The total angular momentum can be found by applying the Noether method to the

action (4.1), which is symmetric under the covariant rotations [41]

δX =
i

2θ
[XkXk, Xi]− εijXi

δA0 = − 1

2θ
D0 (XkXk)

δφ = − i

2θ
(XkXkφ− φxkxk) (4.39)

The result is [40, 41]

QJ = 2πθTrtr

(
εijX

L
i T

0j
L + εijX

R
i T

0j
R −

iθ

2

[
DiD0φ(Diφ)† −Diφ(DiD0φ)†

])
(4.40)

where T 0i is the stress-energy density

T 0i = −1

2

(
Diφ(D0φ)† +D0φ(Diφ)†

)
. (4.41)

For the solutions (4.24), one finds

QJ = πκm(m− 2) (4.42)

and

∆J = . . . (4.43)

5 Gravitational Intepretation of the Solutions

Given a field configuration which solves the field equations of our noncommutative Chern-

Simons-Higgs model, one can regard it as a solution of the theory of noncommutative

12



gravity with torsion coupled to Chern-Simons gauge fields and charged Higgs fields defined

by the action (4.1). Explicitly, the dreibein and connection are obtained by inverting (2.5),

which yields the formulae

ω =
1

2

(
AL + AR

)
(5.1)

e =
l

2

(
AL − AR

)
. (5.2)

Defining the noncommutative metric Gµν by [8, 9]

Gµν ≡ eaµ ? e
b
νηab ≡ gµν + ibµν , (5.3)

the second order formalism can be given in terms of the symmetric metric gµν and anti-

symmetric 2-form potential bµν .
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